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Abstract

With the increased proliferation of computing equipment, there has been a

corresponding explosion in the number and size of databases. Although a great deal

of time and e�ort is spent building and maintaining these databases, it is nonetheless

rare that this valuable resource is exploited to its fullest. The principle reason

for this paradox is that many organizations lack the insight and/or expertise to

e�ectively translate this information into usable knowledge. While data mining

technology holds the promise of automatically extracting useful patterns (such as

decision rules) from data, this potential has yet to be realized. One of the major

technical impediments is that the current generation of data mining tools produce

decision rule sets that are very accurate, but extremely complex and di�cult to

interpret. As a result, there is a clear need for methods that yield decision rule sets

that are both accurate and compact.

The development of the Genetic Rule and Classi�er Construction Environment

(GRaCCE) is proposed as an alternative to existing decision rule induction (DRI)

algorithms. GRaCCE is a multi-phase algorithm which harnesses the power of evo-

lutionary search to mine classi�cation rules from data. These rules are based on

piece-wise linear estimates of the Bayes decision boundary within a winnowed sub-

set of the data. Once a su�cient set of these hyper-planes are generated, a genetic

algorithm (GA) based \0=1"search is performed to locate combinations of them that

enclose class homogeneous regions of the data. It is shown that this approach enables

GRaCCE to produce rule sets signi�cantly more compact than those of other DRI

methods while achieving a comparable level of accuracy. Since the principle of Oc-

cam's razor tells us to always prefer the simplest model that �ts the data, the rules

found by GRaCCE are of greater utility than those identi�ed by existing methods.
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EVOLVING COMPACT DECISION RULE SETS

I. Introduction

Information is simultaneously the most useful and cumbersome byproduct of

the computer revolution. With the falling cost and increased proliferation of comput-

ing and storage equipment, there has been a corresponding explosion in the number

and size of databases. Although a great deal of time and e�ort is spent building

and maintaining these databases, it is nonetheless rare that the full potential of this

valuable resource is realized. The principle reason for this paradox is that the vast

majority of organizations lack the insight and/or expertise to e�ectively translate

this information into usable knowledge (55).

1.1 What is Data Mining?

In light of these conditions, there exists a clear need for automated methods and

tools to assist in exploiting the vast amount of available data. This requirement has

led to the development of data mining technology. Data mining is an umbrella term

which describes the process of uncovering patterns, associations, changes, anomalies

and statistically signi�cant structures and events in data. Traditional data analysis

is assumption driven in the sense that a hypothesis is manually formed and validated

(by statistical means) against the data. In contrast, data mining is discovery driven

in that useful patterns are automatically extracted from the data (47). In order to

accomplish this task, data mining systems frequently utilize methods from disciplines

such as arti�cial intelligence, machine learning and pattern recognition (149).

The data mining algorithms discussed in this document operate on data sets

composed of vectors (instances) of independent variables (or features). For example,

a database may describe a group of people in terms of their age, sex, income and
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occupation. In this case, age is an example of a feature and each instance corresponds

to a distinct individual. The general data mining process is described in Figure 1;

the subprocesses depicted in this 
owchart include:

� Data Selection/Sampling - The sheer size of some databases make it impractical

to process them in their entirety. As a result, it is often necessary to winnow the

data in some manner or randomly select a subset of instances for processing.

� Cleaning/Preprocessing - During this phase, the selected data is prepared for

processing by the data mining algorithm. This can involve translating the data

into an acceptable format or replacing missing or illegitimate entries.

� Transformation/Reduction - The purpose of this phase is to revise and/or

rede�ne the feature set. In many cases all the features included in a given data

set are not required for prediction. In other instances, it may be desirable to

create new features to facilitate the mining process.

� Data Mining - This refers to the application of the selected data mining method

to the data.

� Evaluation Criteria - In this phase the output of the mining algorithm is eval-

uated against a goodness criteria. This is typically done to reduce the volume

of information produced to that which is most useful or relevant.

� Visualization - This is the task of massaging the output to facilitate manual

analysis. Information that can be easily understood has the best chance of

becoming usable knowledge.

While the 
owchart portrays a single thread, in reality the data mining process is

best characterized as iterative and repetitive. This is because locating information

of interest often requires that data be analyzed using several di�erent methods over

a series of trials (as one anonymous researcher puts it, \you torture the data till they

confess").
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Figure 1 Overview of the data mining process.

To discover the hidden patterns in data, it is essential to build a model con-

sisting of independent variables that can be used to determine a dependent variable

(also known as class). Building such a model therefore consists of identifying the

relevant independent variables and minimizing the predictive error (125). It is also

highly desirable to �nd the simplest possible model that �ts the data, since these are

typically the most meaningful and easiest to interpret. This last requirement re
ects

the principle of Occam's Razor which tells us to prefer the simplest model that �ts

the data (10).
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Before we proceed further, it is important to distinguish data mining from

pattern recognition as these terms are sometimes confused with each other. Pattern

recognition is primarily concerned with the construction of accurate classi�ers. A

classi�er is fundamentally a mapping between a set of input variables x1; : : : ; xd to an

output variable y whose value represents the class label !1; : : : ; !m (10). In general,

representing the knowledge embodied within the classi�er structure is not a priority.

Consequently, while there is no shortage of extremely accurate classi�ers, some of the

best are akin to a black box ; that is, they give little or no insight into why they make

decisions. Multi-layer Perceptrons (MLPs) (10; 86) exemplify these types of systems

because its classi�cation rules are embedded in its structure. Since MLP components

(node activation functions, connection weights, etc.) encode complex mathematical

functions, articulating the rules they represent is a di�cult problem (84).

In contrast, the primary purpose of data mining is not simply classi�cation,

but to provide meaningful knowledge to the user regarding the classi�cation process.

Thus, the models produced by data mining algorithms should be in a form that lends

itself to analysis by the user. Decision rule sets which linearly partition the data space

into class homogeneous regions meet this requirement. Examples of techniques that

accomplish decision rule induction (DRI) from data include decision trees (11; 94;

105) and genetic algorithm (GA) based Classi�er Systems (41; 60; 127).

1.2 Applicability of Data Mining to the USAF Mission

While the vast majority of data mining \success stories" have a distinctly

commercial 
avor (7), the general purpose nature of this technology makes it equally

applicable to military organizations. Accordingly, we discuss some potential ways

that predictive data mining methods can aid the USAF mission.

1.2.1 Augmenting the OODA Loop. The Observation, Orientation, Deci-

sion, Action (OODA) loop is perhaps the most widely accepted model of the bat-
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Figure 2 Data mining techniques can help commanders assess information pro-

duced by C3I systems.

tle�eld decision process (133). While command, control, communication, computer

and intelligence (C4I) systems are essential to victory on the modern battle�eld, they

also routinely 
ood commanders with data during an engagement. As a result, tools

which help commanders make informed decisions in a data intensive environment

are at a premium. Ideally, these tools should be able to synthesize a diverse range of

information into knowledge or rules which can be easily understood by a comman-

der (or his sta�). For example, data mining software can (over time) generate rules

that distinguish a full-scale attack from a spoiling attack based on disparate sensor

measurements. Figure 2 shows how the OODA loop can be modi�ed to incorporate

data mining capabilities.

1.2.2 Defense Against Cyber-Attack. The specter of Information Warfare

(IW) looms large as the 21st century approaches. The USAF (143) de�nes IW as
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\Any action to deny, exploit, corrupt or destroy the enemy's information and its

functions while protecting Air Force assets against those actions and exploiting its

own military information operations." According to this de�nition, the defense of

USAF resources against hacker intrusion attempts is a key IW activity. One way to

do this in an automated fashion is to record metrics that monitor the activities of

users and store them in a database. Given a set of such data containing examples

of illegal and authorized users, data mining techniques can be utilized to discover

rules describing abnormal behavior. These rules can alert system administrators to

the presence of potentially hostile users. A similar approach could also be used to

automatically generate decision rules to detect the presence of computer viruses.

1.2.3 Weather Prediction. Weather prediction is a critical Air Force sup-

port function. Because of this, volumes of data exist which document meteorological

conditions at Air Force bases worldwide. Data mining techniques could be applied

here in order to generate a more reliable set of decision rules for predicting weather

phenomena. For instance, decision rules can be generated to predict go/no-go condi-

tions at a given launch site, hours ahead of a scheduled mission based on data from

surrounding weather stations and sensors. Such an approach has the potential to

improve safety, preserving both lives and USAF resources.

1.2.4 Additional Applications. Because the USAF mission is so broad,

there are an almost unlimited variety of other applications of data mining, including

identi�cation of recruitment patterns, screening of intelligence intercepts for rele-

vance, and automatic target recognition.

1.3 Research Problem

Ideally, the knowledge discovered by predictive data mining algorithms should

provide insight into the problem domain (in addition to accurately classifying the

data). This requirement is especially valid for military or intelligence problems,
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where such insight can have life or death consequences. Given these stakes, a funda-

mental question to ask is: is it realistic to expect automated systems (by themselves)

to generate knowledge of such importance? Judging from the level of sophistication

found in the current generation of data mining tools, the answer to this question

is clearly no (47). As a result, people are still required to perform the tedious task

of analyzing the output of these tools to identify knowledge which is interesting or

useful.

A common sense approach to streamlining this process is to develop tools that

mine decision rule sets which are meaningful and easy to interpret. As previously

discussed, predictive models with the following characteristics tend to fall into this

category:

� Accurate - Classify data with a low error.

� Compact - Use a minimum number of rules.

� Simple - Individual rules should have a low level of complexity.

While a wide variety of DRI techniques exist, these often fail to yield rule sets that

achieve these desired attributes. When these methods are surveyed in Chapter II,

it will be shown that a priori assumptions regarding the data and rule structure

made by these algorithms is a major contributor to this problem. Although these

assumptions help to make the algorithms more e�cient, they can also cause the

quality of the decision rules to su�er. Thus, designing a DRI method which avoids

these pitfalls is a valid research problem.

1.4 Approach and Design Goals

We propose the development of the Genetic Rule and Classi�er Construction

Environment (GRaCCE) as an alternative to existing DRI algorithms. GRaCCE is

a multi-phase algorithm which harnesses the power of evolutionary search to mine

classi�cation rules from data. These rules are based on piecewise linear estimates
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of the Bayes decision boundary (81) within a winnowed subset of the data. Once a

su�cient set of these hyper-planes are generated, an evolutionary search is performed

to locate combinations of them which enclose class homogeneous (CH) regions of the

data. In particular, the objective function for this search seeks CH regions that meet

a threshold level of purity (classi�cation accuracy with respect to the majority class)

while maximizing coverage of the target class and minimizing region complexity (in

terms of the number of de�ning partitions). These regions are re�ned further and

used to generate a �nal rule set for classifying the data. In order to successfully solve

the problem outlined above, the algorithm must satisfy the following design goals:

� Function as a general purpose DRI algorithm, capable of processing a variety

of di�erent types of data sets without any prior knowledge of the problem. In

particular, the system must be able to successfully process data sets that vary

with respect to number of classes, features, modes and instances.

� Generate decision rule sets that are compact and simple with respect to those

produced by other DRI methods.

� The algorithm must achieve a level of accuracy on a par with other DRI tech-

niques when given the same data.

� The system must be robust with respect to user selectable parameters.

� The algorithm's architecture can be easily parallelized to facilitate scalable

run-time execution performance.

1.5 Assumptions

Every data mining method makes some assumptions regarding the data it

processes. In the case of GRaCCE, these assumptions include the following:

1. The data is in 
at �le format, with columns representing independent vari-

ables and rows representing separate instances. Data can be extracted from

relational databases (RDBs) in this format through the appropriate queries.

8



2. The data set describes a supervised classi�cation problem, with each instance

assigned to a single, labeled class.

3. All instances have the same dimensionality; this requires that missing values

have been �lled in during preprocessing.

4. The data corresponding to each class resides in one or more clusters (modes).

5. The degree of overlap between any two classes in the data does not make them

indistinguishable from each other.

6. The data has been preprocessed to remove temporal or sequential relationships

between instances.

7. Variable types are limited to discrete or continuous numeric values. In the

case of discrete data types, this involves assigning a distinct natural integer to

represent each category. Descriptive text variables (i.e., name) should not be

present in the input data.

1.6 Summary

This chapter presented the motivation behind and the focus of this disserta-

tion; subsequent chapters detail how the goals introduced here are satis�ed. Chapter

2 covers background on existing approaches to the problem of decision rule induc-

tion. Chapter 3 summarizes fundamental classi�cation and pattern recognition issues

which must be dealt with by any rule induction algorithm. Chapter 4 provides a

comprehensive description of how GRaCCE processes a given data set. Chapter 5

describes the theoretical underpinnings of GRaCCE. In addition, a model for the

algorithm's average and worst case time complexity is derived. Chapter 6 docu-

ments the methodology for testing the system and the corresponding results. This

material includes a comparison of the GRaCCE to several decision tree algorithms.

Lastly, Chapter 7 provides a summary of the research, its signi�cant contributions,

and recommendations for future work.
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II. Background

Induction is the process by which general conclusions (or rules) are learned from

speci�c facts. There is a rich and diverse body of work addressing the problem of

automating the induction process. Indeed, important advances in this area have

been made by researchers in the arti�cial intelligence, machine learning, pattern

recognition and statistical �elds (to name a few). For data mining problems, logical

induction is performed on particular data sets. In this problem domain, we want

to derive decision rules to assign instances from a data set to a category (or class).

In this chapter, a cross-section of rule induction methods are examined with an eye

toward identifying the characteristics that make each data mining approach unique.

This discussion (and the one in the following chapter) furnishes the necessary back-

ground and context to evaluate the GRaCCE algorithm and compare it to others.

2.1 Introduction to Decision Rule Induction

At its core, decision rule induction is a search for regularities within the data

set that can be used to organize it into a �nite, predetermined set of classes. Con-

sequently, while one induction method can be very di�erent from another, they can

be described using a common template consisting of the following characteristics:

� Search Method(s) - As the name implies, this describes the type of search used

by the induction algorithm. Examples of search methods include depth-�rst,

evolutionary, and gradient descent.

� Search Heuristic - The search heuristic is the metric the search method seeks

to optimize. For example, in a genetic algorithm, a heuristic is used by the

objective function to rate the �tness of a given solution.

� Data Related Assumptions - This category refers to assumptions the induction

methodmakes about the structure of the data. For example, does the technique

assume the data is discrete or continuous?
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� Rule Related Assumptions - These are assumptions made about the structure

of the induced rule set. For example, are the conditions in the rule based on

single (univariate) or multiple (multivariate) data attributes?

In subsequent sections, each of these characteristics is highlighted when discussing

each rule induction technique. This information is intended to help the reader de-

velop a balanced perspective on how each method is unique.

2.2 Decision Trees

Decision trees are hierarchical, sequential classi�cation structures that recur-

sively partition a set of objects (data). The tree has three basic components: deci-

sion nodes, branches and terminal nodes (or leafs). The decision node performs a

mathematical or logical test on the data attributes. The purpose of the test is to un-

ambiguously partition (split) the data in some fashion. Once the test is performed,

the data is forwarded to the appropriate child node. Each decision node (parent)

has two or more child nodes. Branches connect the parent to its child nodes; each

branch corresponds to a distinct outcome of the test performed at the parent node.

A leaf is a childless node which corresponds to a class label. To be viable, a tree

must contain zero or more decision nodes and one or more leaf nodes.

An example of a decision tree (based on the Iris data set (34)) is shown in

Figure 3. A feature vector can be classi�ed by a decision tree by starting at the root

node and executing the test at each decision node (taking the appropriate branch)

until a leaf is encountered. Note that the particular test associated with each branch

is described by its arc label. The data sample is then assigned to the class associated

with the leaf. The leaf then indicates the class decision for the data sample. Thus a

path from the root node to a leaf can be thought of as a decision rule.

2.2.1 Fundamentals of Decision Tree Induction. Decision tree induction

(DTI) is the process of building a tree from a given data set. Almost all methods use
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Figure 3 Decision Tree for the Iris Data Set.

a sequential divide and conquer approach: starting with a set of training cases (
),

perform successive partitioning of cases until all subsets belong to a single class. The

primary task at each decision node is determining how to partition the remaining

data. For reference purposes, a generic tree induction algorithm is shown in Figure 4.

While a tree that minimizes size and maximizes accuracy can be constructed

through the application of exhaustive search or dynamic programming, these ap-

proaches usually are computationally infeasible except for trivial data set (111). As

a consequence, most DTI algorithms use a search which is greedy in nature in order

to improve their time complexity. This means that the splits made at each decision

node are based on what appears best for that particular node; in short, partitions

are selected based on local, rather than global, optimization criteria. Although the

greedy approach can be augmented with look-ahead algorithms, these schemes are

considered inferior to the simple greedy heuristic because they have a large compu-

tational cost but yield no signi�cant improvement in tree quality (94).
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procedure PARTITION(
)
where: 
 is a set of class labeled training instances.

1. If all instances in 
 belong to the same class, then return.

2. Find the most discriminatory, or signi�cant feature.

3. Partition the entire set, 
, located at the root of the tree, into several

subsets using the found feature. The number of child nodes originating

from the root node will be equal to the number of possible values the

selected feature can take on.
4. For each child node, call PARTITION(
i), where !i is the subset

of 
 belonging to the ith child node.

Figure 4 Generic Decision Tree Induction Algorithm.

Starting with Hunt's Concept Learning System (62), a great deal of research

has been devoted to the problem of growing decision trees. The resulting re�nement

of decision tree theory has helped to make it one of the most commonly used data

mining techniques. The popularity of decision trees is due to three basic properties;

these are:

� They produce rules that people can understand. This is primarily because

the rules have logical conditions and the data they cover are tightly clustered

together.

� Rules can be generated relatively quickly due (in part) to the use of greedy

search algorithms.

� The generated rules tend to exhibit good classi�cation accuracy and general-

ization (due to pruning of the tree).

Perhaps the most important task in building a decision tree is determining how

to partition the data at each node. Because of this, DTI algorithms are frequently

categorized by the type of hyper-plane used to split the data space. The two most

fundamental of these categories, univariate and oblique, are discussed in the sub-
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sections that follow. This background is augmented with a discussion of splitting

criteria and tree pruning techniques. Lastly, some of the newer approaches to this

problem are surveyed.

2.2.2 Univariate Partition Approach. As the name implies, univariate (or

axis-parallel) partitions linearly divide the data into classes using a single attribute,

xi. Such partitions take the form: xi � C, where C is a constant threshold. Given

this model, �nding a split entails selecting the single feature that acts as the best

discriminator for the data present at each decision node.

Quinlan developed the two best known algorithms in this category: the Inter-

active Decotimizer 3 (or ID3) (104) and its successor, C4.5 (105). These algorithms

are similar in that they follow the procedure outlined in Figure 4. The principal

di�erence between them lies in the criteria utilized for split selection. For ID3, the

most discriminatory feature chosen is the one that maximizes information gain. This

is based on Shannon's de�nition of information entropy (115) which computes the

expected amount of information (in bits) needed for class prediction. Equation 1

calculates the entropy for a set of data S consisting of m classes and d features.

Within set S, !j represents the subset of data belonging to the jth class. Note that

entropy is minimized when S consists of a single class; in contrast, it is maximized

when each class is equally represented in the set.

Entropy(S) = �
mX
j=1

j!j j
jSj log2

�
j!jj
jSj

�
(1)

The entropy for a particular feature (xi) in set S is given by

Entropy(S; xi) =

vX
k=1

jSkj
jSj Entropy(Sk) (2)
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The composite entropy for each feature is summed over the individual entropies for

each of the the possible values that can be taken by a given feature. Thus, computing

the entropy requires the range of values for each feature be categorized in some

manner. In this context, let v be the number of categories for the ith feature and

Sk be the subset of data in S where feature xi is assigned to the kth category. Note

that this approach can be problematic for continuous valued attributes if the discrete

values are arbitrarily assigned. In turn, the information gain criteria measures the

e�ectiveness of a particular feature in reducing the entropy for the set.

Information Gain(S; xi) = Entropy(S)� Entropy(S; xi) (3)

While e�ective, ID3 tends to produce relatively large trees. The reason for this

is a bias in favor of tests with many outcomes (17). In order to remedy this problem,

Quinlan developed C4.5 (summarized in Table 1). The gain ratio search criterion

used by C4.5 is shown below.

Split Information(xi) = �
vX

k=1

jSkj
jSj log2

�
jSkj
jSj

�
(4)

Gain Ratio(xi) =
Information Gain(S; xi)

Split Information(xi)
(5)

By maximizing the gain ratio, priority is given to attributes that best distinguish

between classes !1; ::; !m while minimizing the depth of the tree. Because attributes

that exhibit these properties are located closer to the root node, this selection process

results in smaller decision trees.
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Figure 5 Univariate Decision trees can yield rule sets that are more complex than

necessary.

Univariate partitioning methods are attractive because they are straightfor-

ward to implement (since only one feature is analyzed at a time) and the derived

rule set is relatively easy to understand. The main disadvantage, however, is that

the rule set is constrained in how it can represent the actual structure of the data.

This situation is illustrated by Figure 5. Note that while the data set can be sep-

arated relatively easily, the requirement that the partitions be univariate limits the

solutions that can be considered. As a result, axis-parallel splits tend to produce

deep trees that yield rule sets which are more complex than necessary (57). Another

complicating factor is the mutual exclusive nature of decision tree rules. Although

such decision rules unambiguously classify the data, the extra logic required causes

the tree to grow much larger as compared to rule sets that tolerate overlap (149).

2.2.3 Oblique Partition Approach. Oblique partitioning provides a viable

alternative to univariate methods. Unlike their univariate counterparts, oblique par-

titions are formed by combinations of features. The general form of an oblique

partition is given by
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Table 1 C4.5 Summary.

Characteristic Description

Search Method Deterministic search using a greedy heuristic.

Search Criteria Gain Ratio

Data Related

Assumptions

Heuristic evaluates discrete data. Continuous data is catego-

rized.

Rule Related As-
sumptions

Each condition corresponds to a univariate, linear partition.

dX
i=1

�ixi � C (6)

where �i represents the coe�cient of the ith feature. Because of their multivariate

nature, oblique methods o�er far more 
exibility in partitioning the data space; this


exibility comes at a price, however. Consider that given a data set containing n

instances of dimension d, there can be 2 �
P

d

i=0

0
@ n� 1

i

1
A oblique splits if n >

d (140); each split is a hyper-plane that divides the search space into two non-

overlapping halves. For univariate splits, the number of potential partitions is much

lower, but still signi�cant, n� d (94). In short, �nding the right oblique partition is

a di�cult task.

Given the size of the search space, choosing the right search method is of criti-

cal importance in �nding good partitions. Perhaps the most comprehensive reference

on this subject is the landmark book by Breiman (et all) on classi�cation and regres-

sion trees (CART). In it, Breiman describes his CART algorithm for constructing

oblique decision trees. At a macro level, CART uses the same basic algorithm shown

in Figure 4; it also uses a generic goodness metric for measuring the split quality.

At the decision node level, however, the algorithm (summarized in Figure 6) be-

comes extremely complex. CART starts out with the best univariate split. It then
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To induce an oblique split at node T of the decision tree:
Normalize values for all d attributes.
L = 0;

WHILE(TRUE)

L=L+1;

Let the current split sL be v � c, where v =
P

d

i=1 aixi.
FOR i = 1; ::; d

FOR 
 = �0:25; 0; 0:25
Search for the � that maximizes the goodness

of the split v � �(ai + 
) � c.
Let ��; 
� be the settings that result in the highest goodness

for these three searches.
ai = ai � ��; c = c� ��
�.

Perturb c to maximize the goodness of sL, keeping a1; ::; ad constant.
IF jgoodness(sL)� goodnessL�1)j � � THEN break;

Eliminate irrelevant attributes in a1; ::; ad using backward elimination.

Convert sL to a split on the unnormalized attributes.
Return the better of sL and the best axis-parallel split as the split for T .

Figure 6 Procedure used by CART for �ndings splits at decision tree nodes.

iteratively searches for perturbations in feature values (one feature at a time) which

maximize some goodness metric. At the end of the procedure, the best oblique and

axis-parallel splits found are compared and the better of these is selected.

In the above algorithm, the \goodness" criteria is intentionally left unde�ned.

CART was designed to accommodate a number of possible criteria for split evalua-

tion. In general, one wants the leaves of a tree to be pure with respect to a given

class. This requires the DTI algorithm to ensure each child node has less impurity

than its parent. Breiman (11) proposed an impurity function i(S) (known as the

Gini Index) which is de�ned as
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i(S) =
X
i 6=j

p(!ijS)p(!j jS) (7)

where p(!ijS) is the probability of a random sample X belonging to class !i given the

distribution of data in set S. Using this function, the goodness of a split can be de�ned

in terms of the decrease in impurity. Such a metric is shown in Equation 8 where L

and R denote the opposite sides of the hyper-plane (h) under consideration. Thus,

pR is the proportion of S that goes to the right child and i(SR) is the corresponding

impurity of that subset. Thus using �i(h; S) as a goodness criteria insures that the

partitions resulting in the greatest decrease in impurity are chosen.

�i(h; S) = i(S)� i(SR)pR � i(SL)pL (8)

Although CART provides a powerful and e�cient solution to a very di�cult

problem, it is not without its disadvantages. For example, because it is fully deter-

ministic, it has no inherent mechanism for escaping from local optima (i.e., the best

solution found). As a result, CART has a tendency to terminate its partition search

at a given node too early. Perhaps the most fundamental disadvantage of CART

(and of decision trees in general) is that the DTI process can cause the metrics

to produce misleading results. In particular, because DTI algorithms choose what

is locally optimal for each decision node, they inevitably ignore splits which score

poorly alone, but yield better solutions when used in combination. This problem is

illustrated by Figure 7. The solid line indicate the splits found by CART; the order

of induction is re
ected by each split's numeric label. Although each split optimizes

the impurity metric, the end product clearly does not re
ect the best possible par-

titions (indicated by the dotted lines). However, when evaluated as individuals, the
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(1)

(2)

Figure 7 CART generated splits (solid lines) minimize impurity in a way that is

not necessarily optimal (denoted by dotted lines).

dotted lines register high impurities and are therefore not chosen. Given this, it is

apparent that the sequential nature of decision trees can prevent the induction of

rule sets which re
ect the natural structure of the data.

2.2.4 Pruning the Tree Structure. Another problem with the induction

process is that it is di�cult to determine when to stop. This problem manifests

itself in the form of decision trees which over-�t the data; that is, they infer more

structure than is justi�ed by the training cases. This is especially true if the criteria

Table 2 CART Summary.

Characteristic Description

Search Method Deterministic search using a greedy heuristic.

Search Criteria Impurity

Data Related Assump-

tions

Data can be discrete or continuous.

Rule Related Assump-
tions

CART uses linear partitions which can be either univari-
ate or oblique.
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for halting growth is to have every training instance correctly classi�ed. One solution

to the problem of over-�tting is to reduce or limit the size of the decision tree in some

manner. In general, techniques which accomplish this are divided into preemptive

or pruning categories, depending on where the procedure is applied during the DTI

process (104).

Preemptive methods use some predetermined criteria to halt tree growth.

These criteria are typically tested on a per-node basis; as a result, growth may

halt along one branch of the tree, but continue along others. For example, a node

may stop generating children when its assigned data meets a given purity threshold

or falls below a �xed size threshold. The problem with this approach is that choosing

the stopping criteria arbitrarily may cause the tree to over-�t or under-�t (due to

premature halting of the DTI algorithm) the data.

In contrast, the more commonly used approach is to �rst generate a tree that

over-�ts the data and then apply a pruning technique to reduce the size of the

tree (111). Pruning involves the removal of subtrees that do not contribute signif-

icantly to classi�cation accuracy due to poor generalization. Quinlan's pessimistic

pruning technique (105) provides a good example of the utility of these methods.

Conceptually, Quinlan's approach is quite simple: subtrees are pruned whenever do-

ing so causes a reduction in the predicted number of errors (PNE). While the number

of classi�cation errors cannot be computed exactly, Quinlan estimates them using

the binomial distribution (59) for a given con�dence level. PNE is computed for a

given subtree using Equation 9 where:

� Ni is the number of training cases in the ith branch of the subtree,

� Ei is the number of training classes incorrectly classi�ed in that branch,

� UCF is the binomial distribution with parameters E,N and con�dence levelCF .
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4 branches

PNE = 4.935

Single Leaf

PNE = 3.935

Replace multiple branches 
with a single leaf

Figure 8 Pruning can reduce the predicted number of errors (PNE).

PNE =
X

Branches

Ni � UCF (Ei; Ni) (9)

Because it is summed over all branches of the subtree, it is possible to reduce

the PNE by replacing a complex error free subtree with a simpler structure (such

as a leaf) that contains some error. For example, consider the subtree shown in

Figure 8 which has four branches (containing 14 training instances) and no errors.

The PNE for this branch is

PNEBefore = 3� (4� U25(0; 4)) + 2 � U25(0; 2),

= 3� (4� 0:63) + 2� 0:5625 = 4:935.

If this subtree were to be replaced by a single leaf with two errors (since the

items in one branch are now misclassi�ed), the resulting PNE is

22



PNEAfter = 14 � U25(2; 14),

= 14 � 0:2811 = 3:935.

As the above example illustrates, simplifying the tree structure lowers the PNE

even though the change results in more training errors. While this may seem like

a paradox, it is indicative of how over-�tting can degrade a decision tree's ability

to generalize. When the structure is simpli�ed, the expected generalization (and

accuracy) improve. While there are many other pruning techniques in this category,

studies have shown that no one method is generally superior to the others (93).

2.2.5 Variant Methods. Although algorithms such as ID3, C4.5 and CART

make up the foundation of DTI practice, there is always room for improvement in

terms of the accuracy, size, and generalization ability of the generated trees. As

would be expected, many researchers have tried to build on the success of these

techniques by developing better variations of them. In this section, several of these

variant algorithms are surveyed.

2.2.5.1 Split Selection using Random Search. Since random search

techniques have proven extremely useful in �nding solutions to non deterministic

polynomial complete (NP-complete) problems (95), it is natural they be applied to

DTI. Heath (54) developed a DTI algorithm called SADT 1 which uses a Simulated

Annealing (SA) process to �nd oblique splits at each decision node. SA is a variation

of hill climbing which, at the beginning of the process, allows some random downhill

moves to be made (109). As a computational process, SA is patterned after the

physical process of annealing (71), in which metals are melted (at high temperatures)

and then gradually cool until some solid state is reached.

Starting with an initial hyper-plane, SADT randomly perturbs the current so-

lution and determines the goodness of the split by measuring the change in impurity

1Simulated Annealing of Decision Trees
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(�E). If �E is negative (i.e., impurity decreases), the new hyper-plane becomes

the current solution; otherwise, the new hyper-plane becomes the current split with

probability e�(�E=T ) where T is the temperature of the system. Because SA mimics

the cooling of metal, its initially high temperature falls with each perturbation. At

the start of the process, the probability of replacing the current hyper-plane is nearly

1. As the temperature cools, it becomes increasingly unlikely that worse solutions

are accepted. When processing a given data set, Heath typically grows hundreds of

trees, performing between 3000 and 30000 perturbations per decision node. Thus,

while SADT has been shown to �nd smaller trees than CART, it is very expensive

from a computational standpoint (54).

A more elegant variation on Heath's approach is the OC1 system (described

in Table 3) developed by Murthy (94). Like SADT, OC1 uses random search to

�nd the best split at each decision node. The key di�erence is that OC1 rejects the

brute force approach of SADT, using random search only to improve on an existing

solution. In particular, it �rst �nds a good split using a CART-like deterministic

search routine (see Figure 6). OC1 then randomly perturbs this hyper-plane in order

to decrease its impurity. This step is a way of escaping the local optima in which

deterministic search techniques can be trapped. If the perturbation results in a

better split, OC1 resumes the deterministic search on the new hyper-plane; if not,

it re-perturbs the partition a user-selectable number of times. When the current

solution can be improved no further, it is stored for later reference. This procedure

is repeated a �xed number of times (using a di�erent initial hyper-plane in each

trial). When all trials have been completed, the best split found is incorporated into

the decision node. This combination of deterministic and limited random search has

proven extremely e�ective in inducing trees that are relatively small and accurate

(as compared to methods such as CART). In addition, because the random search

is applied in a more focused manner, OC1 is more computationally e�cient than

SADT.
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Table 3 OC1 Summary.

Characteristic Description

Search Method Uses a combination of deterministic and random search.

Search Criteria Impurity

Data Related Assump-

tions

Data can be discrete or continuous.

Rule Related Assump-
tions

Primarily utilizes oblique (multivariate), linear parti-
tions.

2.2.5.2 Incremental Decision Tree Induction. Up to this point, the

DTI algorithms discussed grow trees from a complete training set. For serial learning

tasks, however, training instances may arrive in a stream over a given time period.

In these situations, it may be necessary to continually update the tree in response

to the newly acquired data. Rather than building a new decision tree from scratch,

the incremental DTI approach revises the existing tree to be consistent with each

new training instance. Utgo� (144) implemented an incremental version of ID3

(called ID5R). ID5R uses an E-Score criteria to estimate the amount of ambiguity

in classifying instances that would result from placing a given attribute as a test in

a decision node. Whenever the addition of new training instances does not �t the

existing tree, the tree is recursively restructured such that attributes with the lowest

E-Scores are moved higher in the tree hierarchy. In general, Utgo�'s algorithm yields

smaller trees compared to methods like ID3, which batch process all training data.

Techniques similar to ID5R include an incremental version of CART, developed by

Crawford (21). Incremental DTI techniques result in frequent tree restructuring

when the amount of training data is small, with the tree structure maturing as the

data pool becomes larger.

2.2.5.3 Decision Forests. Regardless of the DTI method utilized,

subtle di�erences in the composition of the training set can produce signi�cant

variances in classi�cation accuracy. This problem is especially acute when cross-

validating small data sets with high dimensionality (28) (also refer to Section 3.1).
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Researchers have reduced these high levels of variance by using decision forests, com-

posed of multiple trees (rather than just one). Each forest is unique because it is

grown from a di�erent subset of the same data set. For example, Quinlan's window-

ing technique (105) induces multiple trees, each from a randomly selected subset of

the training data (i.e., a window). Another approach was devised by Ho (57), who

based each tree on a unique feature subset. Once a forest exists, the results from

each tree must be combined to classify a given data instance. Such committee-type

schemes for accomplishing this range from using majority rules voting (53) to sta-

tistical methods for combining evidence (119). While these methods can improve

overall classi�cation accuracy, it does not yield a single, coherent set of rules. This

characteristic makes committeemethods undesirable from a data mining perspective.

2.3 Piecewise Linear Classi�ers

One of the principal disadvantages of DTI algorithms is that the partitioning

metrics make inherent assumptions about the structure of the data set. If these

assumptions turn out to be false, the metric may not yield the intended result (recall

the example of Figure 7). Piecewise linear classi�ers (PLCs) are an alternative that

o�er a much more 
exible approach. These methods locate linear partitions within

the data that approximate the natural class boundaries within the data. Once found,

such hyper-planes serve as building blocks upon which to base classi�cation rules.

The fact that class boundaries in \real-world" data sets often overlap make this very

di�cult, however.

A novel approach to this problem was developed by Park and Sklansky (99;

100), based on earlier research by Sklansky and Michelotti (123). Their method

involves the cutting of straight line segments, called Tomek links (139), that join

opposing points of di�erent classes in d-dimensional space. These links are gener-

ated using a variation on the Condensed Nearest Neighbor (CNN) algorithm (52)
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Figure 9 Piecewise Linear Classi�er algorithms search for hyper-planes that cut

the maximum number of Tomek links separating two classes.

developed by Tomek (139). The basic idea is to link adjacent pairs of points (from

di�erent classes) that lie along their common decision boundary.

Each hyper-plane that cuts a Tomek link is akin to a class partition. The

quality of the partition increases with the number of links it cuts (assuming all links

separate the same two classes). Minimizing the number of hyper-planes required to

cut all of the links results in a set of partitions that approximate the Bayes optimal

decision surface2. Park and Sklansky outline a two phase, iterative training procedure

for individual hyper-planes. In the �rst phase, the hyper-plane is trained such that

only those Tomek links connecting two pre-designated classes are cut. During the

second phase, the partition orientation is adjusted as to cut Tomek links of other

classes (without undoing the cuts made in the �rst phase). Figure 9 depicts the links

and associated partitions generated by the procedure for a synthetic data set.

Piecewise Linear Classi�ers are signi�cant in the context of this dissertation

because they form decision rules from combinations of hyper-planes which approx-

imate the natural class boundaries. As we show in Chapter IV, aspects of this

2Refer to Chapter V for a detailed discussion of what constitutes a Bayes optimal decision
surface.
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D2

D3

D1

D3 > D2 > D1

Figure 10 No Tomek links are generated in the middle region. This is because
each opposing class is not close enough to the other across this divide.

paradigm are very similar to that of GRaCCE. That being said, the Park and Sklan-

sky's PLC construction technique has some major shortcomings. The �rst is that

a large number of Tomek links are generated if the classes in the data have a high

degree of overlap. This can result in a large number of hyper-planes which over-

�t the data (100). While this condition can be mitigated by using an edited kNN

procedure (150), this solution is not discussed by the authors. Perhaps the most

fundamental problem, however, is that of completeness. In particular, the authors

make no e�ort to ensure that the Tomek links generated are su�cient to represent

the actual class boundaries; this is problematic as the links are generated only once,

at the start of the algorithm. As Figure 10 shows, for some types of data sets, the

distance metric can cause some boundaries to be ignored. As a result, the PLC

algorithm is unable to generate su�cient Tomek links to completely enclose each

cluster.

2.4 Evolutionary Methods

Up to this point, the rule induction methods described have been deterministic

in nature or used random search in a limited manner. In this section, the application
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Table 4 Piece-wise Linear Classi�er Summary.

Characteristic Description

Search Method Uses deterministic search.

Search Criteria Each partition separating two class must maximize the

number of Tomek links (separating the same classes) it

cuts.

Data Related Assump-

tions

Data can be discrete or continuous.

Rule Related Assump-
tions

Partitions must be linear.

of evolutionary algorithms (EAs) to the problems of pattern classi�cation, decision

tree induction and rule induction are discussed. Much of this material assumes a fa-

miliarity with genetic algorithms (GAs) and genetic programming (GP); accordingly,

a short tutorial on these subjects is provided in Appendix A.

2.4.1 Genetic Decision Tree Algorithms. GAs are frequently employed

as tuning mechanisms for other algorithms. In terms of the pattern classi�cation

problem, hybrid algorithms have been developed that use GAs to enhance the per-

formance of existing DTI techniques. A typical method employed by these hybrids is

to use GAs to preprocess the data set input to the induction algorithm. For example,

DeJong et all (25) used GAs in conjunction with the ID3 algorithm (105) to improve

decision tree quality. Each tree was constructed using the features selected in each

individual's chromosome. The quality of the resulting tree in terms of accuracy and

structural simplicity is then evaluated by an objective function. By mating individ-

uals which resulted in the �ttest trees, DeJong was able to evolve a superior feature

set for DTI.

Turney (142) proposed a similar approach where the objective was to minimize

the cost associated with classi�cation errors. In contrast to DeJong, however, his

GA searched for a set of biases for each attribute in the data set (making it more

akin to feature extraction). The induction algorithm (C4.5) was modi�ed to take
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these biases into account when selecting attributes to partition. Another approach

(developed by Janikow (66)) uses GAs to optimize the fuzzy value boundaries for

domain values of a given attribute. For example, if the attribute label is speed and

the domain values are slow, medium, and fast, then the GA is used to determine the

actual speed thresholds for each domain value. By changing these thresholds, the

structure of the tree induced (and its corresponding performance) can be streamlined.

These approaches are appealing because they transform a greedy search into an

evolutionary one while retaining proven induction algorithms.

2.4.2 Classi�er Systems. Classi�er systems (CSs) are one of the oldest

evolutionary methods for machine learning. Generally speaking, CSs use GAs to

evolve production rules that respond to and act on a given environment (refer to

Table 5). According to DeJong (24), there are two basic classi�er paradigms: the

Michigan approach exempli�ed by Holland and Reitman's CS-1 system (60) and the

Pittsburgh approach exempli�ed by Smith's LS-1 system (127). The main di�erence

between these two stems from the composition of their populations. Systems using

the Michigan approach maintain a population of individual rules while those using

the Pittsburgh paradigm maintain a population of variable-length rule sets. In each

case, members compete with each other for space and priority in the population.

While they have been applied to a broad range of problems (41), this discussion

centers on their use for learning classi�cation rules from data. For more information

on this topic, Gordon (46) provides a comprehensive reference.

Figure 11 depicts a block diagram of a rule induction CS based on the Michigan

paradigm (78). Assuming a data set with d discrete features and m classes, each

member of the population represents a �xed-size, rule of the form:

if <antecedent> then <consequent>, where

<antecedent> := < c1 > \ � � � \ < cd >, and

<consequent> := !1; : : : ; !m.
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Genetic Algorithm

         Member
(Classification Rule)

Population

Environment 
  (Data Set)

rule

fitness

Learning Component

Evaluate performance
of rule in classifying
data.  Assign fitness
based on coverage
and purity measures.

Figure 11 Block diagram representation of a GA-based Classi�er for Rule Induc-

tion.

The antecedent of each rule is a conjunction of d conditions, each of which is

a test on a unique feature. The consequent contains a label corresponding to one

of the m classes. When a rule is applied to a given feature vector, the state (true

or false) of each condition is determined by matching the value of each feature to

the settings in its corresponding conditions. If the feature's value is consistent with

these settings, then the condition evaluates to true; if not, the condition is false.

When the antecedent evaluates the true, the class label speci�ed in the consequent

is assigned to the feature vector.

For this scheme to function, the GA chromosome structure (genotype) must

be able to represent a given rule (phenotype). If a binary GA is utilized, then

each condition must map to a series of genes, each of which represent an on/o� for

each discrete value of its associated feature. For example, if the ith feature has an

enumerated data type of fred, white, blue, greeng, then its associated condition is
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represented by a 4 bit binary sequence. Thus, a sequence of 0101 represents the

following symbolic condition:

< ci > := if (Fi = white or green).

The �tness of a given rule is determined by its coverage and purity. Coverage

is the percent of the total instances the antecedent matches. Purity is the class

diversity of the covered feature vectors. Of course, rules with wide coverage and

high purity are most �t. By using this evaluation scheme, the need to model the

consequent in the chromosome is eliminated; this simultaneously simpli�es the GA

and the search space.

Several classi�er systems have been speci�cally designed for learning rules from

data. These systems are typically based on (or hybrids of) the Michigan or Pitts-

burgh paradigms. Examples of such systems include REGAL (96) and DeJong's

GABL (24). REGAL is based on the Michigan approach, but di�ers in that it allows

the rules in the population to overlap with each other. In contrast, GABL uses the

Pittsburgh approach, with each member of the population representing a variable

length rule set; the encoding for each rule under this scheme is similar to that de-

scribed above. A commercial system, GA-MINER, is being developed based on work

done at the University of Edinburgh (35). What distinguishes GA-MINER from its

competition is the use of pattern templates to �nd interesting rules.

Because the evolved rules are speci�ed in Disjunctive Normal Form (DNF),

each rule is analogous to a path in a decision tree (extending from the root node to

a leaf). Since rules produced are similar to those produced by ID3 (104), classi�er

systems su�er from the same disadvantage | the way the data is separated may be

inconsistent with the natural structure of the data (refer to Figure 5). As a result, the

rules produced might be overly complex and/or misleading. In addition, classi�er

systems often require numeric features to be categorized (mapped to a symbolic
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Table 5 GA-Based Classi�er System Summary.

Characteristic Description

Search Method Uses evolutionary search (GA-based).

Search Criteria Maximizes rule coverage and purity.

Data Related Assump-

tions

Data must be discrete.

Rule Related Assump-
tions

Rules utilize univariate, linear partitions. Partitions are
speci�ed with regard to discrete categories. The two ma-

jor approaches for rule evolution are the Michigan and
Pittsburgh paradigms.

domain). As discussed in Section 3.5, the way the discrete categories are de�ned can

signi�cantly in
uence the complexity of the induced rule set (66).

2.4.3 Genetic Program-Based Classi�ers. Koza (77) introduced the idea

of using genetic programs to perform classi�cation in his landmark book Genetic

Programming; in it, he showed how GPs could be used to implement decision tree

classi�ers. Perhaps the �rst serious application of the GP paradigm to the problem

of classi�cation was accomplished by Tackett (134); the general outline of this ap-

proach is summarized in Table 6. The speci�c application was an Automatic Target

Recognition (ATR) system to detect a variety of vehicles (including tanks, trucks,

etc) in Infra-Red (IR) images.

To implement his classi�er, Tackett utilized the output of the Hughes Multi-

Target Acquisition Processor (MTAP) ATR system. MTAP generated a set of statis-

tical features describing anamolies detected within the image. The GP's terminal set

consisted of these features along with a random number generator. A very primitive

function set was utilized containing the addition (+), subtraction (�), multiplica-

tion (�), protected division (%) and conditional (�) operators. Each GP's �tness

is based on its false alarm rate (FAR) for a given probability of detection (PD).

Objects detected by MTAP are classi�ed by comparing the output of each GP's root

node (�) to a simple threshold. If � > 0 then the object is classi�ed as a target;
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otherwise, it is tagged as clutter. The classi�ers evolved using this approach were

compared against two other methods: Multi-Layer Perceptrons (MLPs) and Binary

Decision Trees (BDTs). Tackett's results show the GP outperforming the MLPs and

BDTs for high PD rates (96%).

Tackett's success in using GPs as classi�ers spurred others to experiment fur-

ther. Teller and Veloso (137) developed the Parallel Architecture for Discovery and

Orchestration (PADO) to detect images and sounds in large databases. PADO uses

a bi-level classi�cation scheme that weights the ability of a pool of GPs to identify

objects of a given class. Another innovation incorporated into PADO is the use of

\smart" operators that learn the best way to evolve a GP over time. According to

the authors, PADO's classi�cation accuracy varies between 50% and 80% depending

on the type of sound or image being retrieved. Their approach of using a pool of

solutions (rather than a single one) to classify an object is utilized to some extent

in GRaCCE.

Iba (64) developed another variant of the GP paradigm for classi�cation (known

as STROGANOFF). STROGANOFF di�ers from Tackett's approach in two basic

ways. The �rst di�erence relates to the nature of the GP structure itself. Iba's GPs

are BDTs in which nodes consist of quadratic polynomials and leaves are the input

variables. Since no function set is used, the nodes are processed by solving each

quadratic using a regression technique. As a result, the classi�er consists of a hier-

archical equation that must be solved through using recursive, multiple regression

analysis. The second di�erence is the use of a minimum description length (MDL)

based objective function for evaluating tree structures. This �tness metric trades

o� the structural complexity of the tree against its mean squared classi�cation error

(MSE). Iba demonstrated STROGANOFF's versatility by applying it to a number

of pattern recognition problems (including a temporal problem). In these exper-

iments, STROGANOFF outperformed traditional GPs in terms of accuracy and

generalization ability. Perhaps the biggest disadvantage of STROGANOFF is its
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Table 6 Genetic Program based Classi�ers Summary.

Characteristic Description

Search Method Evolutionary search (GP).

Search Criteria Maximize classi�er accuracy and minimize complexity.

Data Related Assump-

tions

None.

Rule Related Assump-
tions

Primarily utilized for two-class pattern recognition prob-
lems. The evolved program must use the speci�ed func-

tion and terminal sets. In addition, the GPs can produce
non-linear class partitions.

computational complexity due to the multiple regression analysis that must be done

for each candidate solution. In addition, the numerical nature of STROGANOFF's

solutions make them di�cult to interpret.

Sherrah (118) proposed using GPs to evolve features for input to simple clas-

si�cation algorithms (such as Maximum Likelihood or Perceptrons (10)). Using this

approach, data is clustered using an unsupervised algorithm. A decision tree struc-

ture is then used to iteratively partition the data into individual classes. Each node

in the decision tree has two components: a feature preprocessor and a classi�er. The

feature preprocessor is a GP that is used to fashion new features (out of existing

ones) for input into the decision node's classi�er. Sherrah dubs this architecture the

Evolutionary Self-Structuring Classi�er (ESC). A follow-up article by Sherrah (117)

indicates marginal (but unimpressive) success when applying ESC to several bench-

mark problems.

Lastly, Konstam (76) uses a hybrid GP/GA approach to evolve classi�ers for

two-group classi�cation problems. In particular, Konstam �rst uses GP to evolve the

functional form of the discriminant function. He then employs a GA to evolve the

coe�cients that maximize the accuracy of the classi�er. Although interesting, using

two evolutionary paradigms to construct partitions make this approach extremely

ine�cient.
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2.4.4 Mining the Genetic Program. Despite their success as classi�ers, GPs

have proven extremely di�cult to interpret; this is a major obstacle to their use in

data mining problems. One possible solution lies in identifying those subexpressions

(or building blocks) in the GP that make it a good classi�er. These subexpressions

should be much easier to interpret than the GP as a whole. While a number of

algorithms (such as Goldberg's Messy GAs (44)) were developed to locate good

building blocks in GA chromosomes, almost no comparable work has been done for

GPs.

The exception is the research accomplished by Tackett (135). Tackett sets up a

framework by which to track the migration of unique subexpressions (traits) within

a GP population during the evolution process. Speci�cally, he collects statistics

for each subexpression (such as conditional �tness, peak �tness, frequency, time of

creation, etc) to determine its relative worth. The theoretical basis of this approach

is Holland's Schema theorem (61) which implies that traits that contribute to above

average �tness will have a high frequency of occurrence in the population.

Although Tackett's research yielded some interesting �ndings, his technique is

di�cult to automate because it requires careful interpretation of these statistics over

the course of a run. A more tractable approach for measuring saliency is to prune

individual subexpressions from the GP and measure their direct impact on GP �t-

ness. While Tackett mentions pruning as a possible alternative to his approach, he

indicates the associated computational cost would be prohibitive. Preliminary ex-

perimentation (87) has shown that salient GP subexpressions routinely partition the

data in e�ective, but non-intuitive ways (87). For example, the partitions evolved are

frequently non-linear. Thus, despite this elaborate procedure, there is no guarantee

that the end product will be easily understood. This is a fundamental reason why

GPs were not actively pursued in the implementation of GRaCCE.
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2.5 Association Rules

Association rules (ARs) are among the most basic type of rules that can be

learned from data. Agrawal and Srikant (2) de�ne a generalized AR as an implication

of the form: X ! Y , where X and Y are sets of discrete conditions (such as X = x1

and Y = y2) in a database (D) such that X \ Y = ;. Since rules are rarely

universal, metrics exist to describe the extent to which rules hold in D. The two

principle metrics used in this regard are con�dence and support. The rule X ! Y

holds in D with con�dence c if c% of feature vectors where X holds also satisfy Y .

The rule is also said to have a support s if the association X \ Y = ; is true for s%

of the feature vectors in D.

The algorithms for mining ARs from data are fairly straightforward. The three

basic phases of AR mining are described in (2) and summarized below:

1. Find all sets of items whose support is greater than a user speci�ed threshold.

The sets of such items are called frequent item sets. When identifying item

sets, emphasis is put on �nding the largest possible item sets which meet the

support threshold.

2. Use the frequent item sets to generate the desired rules. This is accomplished by

breaking up item sets into separate components and establishing relationships

between them. For example, if (X;Y;Z) is a frequent item, then any of its

subsets is also a frequent item. We can then derive the rule XY ! Z if this

relation meets the minimum support and con�dence thresholds set by the user.

Han and Fu (50) suggest using the hierarchical concept relationships to make

substitutions in association rules in order to increase their support, thereby

improving the quality of the derived rules. Note that generation of redundant

rules (such as X ! Z) are avoided with this method.

3. The next step is to prune the set of rules discovered. Though AR algorithms

tend to discover many rules, only a few of these will be deemed \interesting."
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To prevent the user from being overwhelmed by trivia, it is often desirable to

discard all rules that are not determined to be useful.

While association rules are easy to generate, their usefulness is often dubious.

This is due to two main factors. First, AR algorithms produce rules based on any

type of association in the data. Unlike the induction algorithms discussed thus far,

associations may be generated for any combination of features; class labels need

not be part of an AR. This arrangement leads to rule sets with a high degree of

redundancy. As a result, disjoint rules are presented to the user without a coherent

framework. While simple methods can be used to minimize the confusion (such as

sorting rules by consequent attribute), it is often incumbent on the user to bring

order out of chaos. Second, the methods most widely used for pruning rules are

domain independent. By using generic criteria for pruning, these approaches run

the risk of destroying information that is potentially useful to the end user. A more

thorough discussion of techniques for identifying interesting rules can be found in

Chapter III.

2.6 Induction of Bayesian Networks

Up to now our discussion has focused on the induction of decision rules which

result in the assignment of an absolute class label. In reality, however, classi�cation

decisions are frequently made with a degree of uncertainty. For example, in a two

class problem, a given feature vector may have a 70% probability of belonging to the

�rst class and a 30% probability of belonging to the second. From a decision making

point of view, rules that yield class probabilities could be desirable. A treatment of

the probability theory underlying the class selection process is given in Section 5.1.

Bayesian Networks (BNs) provide a means of obtaining this information. BNs

are directed acyclic graphs (DAGs), where the nodes are random variables (RVs) and

the arcs specify the independent assumptions that are held between these variables.

Thus, the BN represents the joint probability distribution over all the RVs in its
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family-out (fo) bowel-problem
(bp)

light-on (lo) dog-out (do)

hear-bark (hb)

P(fo) = 0.15 P(bp) = 0.01

P(do|fo,bp)   = 0.99
P(do|fo,-bp)  = 0.90
P(do|-fo,bp)  = 0.97
P(do|-fo,-bp) = 0.30

P(lo|fo)  = 0.60
P(lo|-fo) = 0.05

P(hb|do)  = 0.70
P(bp|-do) = 0.01

Figure 12 Bayesian Network for Charniak's \Family Out" problem.

domain. Once constructed, a BN enables the conditional probabilities of the nodes

in the network to be computed given evidence (i.e., the values of those nodes which

have been observed). As a result, BNs are a powerful tool for both representing

uncertainty and performing probabilistic inference3. The BN for Charniak's classic

\Family Out" problem (15) is shown in Figure 12. In this example, the \family-

out" and \bowel-problem" nodes are equivalent to classes since only they have prior

probabilities.

The task of constructing a BN can be separated into two subtasks: structure

learning and parameter learning (79). Structure learning involves identifying the

topology of the network. This requires knowledge of the causal relationship between

RVs. In the Figure 12 example, the \dog-out" RV causes \hear-bark." The pa-

rameter learning subtask involves estimating the numerical parameters for a given

network topology. Of these two tasks, establishing a viable structure for a BN is by

far the more di�cult. A summary of the BN construction issues is given in Table 7.

3Inference is based on Bayesian decision theory. Please refer to Chapter V for a short tutorial
on this subject.
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A frequently used procedure for BN induction is the K2 algorithm developed by

Cooper and Herskovits (19). Given a database D and an approximate causal ordering

for the RVs (Bs), K2 uses a greedy heuristic to induce a network that maximizes

their joint probability, P (D;Bs). At its conclusion, K2 returns an estimate of how

closely the induced BN �ts the data. The complicating factor is that constructing

the optimal BN is predicated on specifying the \correct" causal ordering. A number

of techniques have been developed to help solve this hard, combinatorial problem.

Verma and Pearl (146) proposed an algorithm for establishing causal order between

RVs (if one exists at all). In addition, Larra~naga (79) used a GA-based method to

search for an optimal ordering. Singh (122) provides a survey of on-going research

e�orts in this area.

While BNs have garnered some interest as a data mining technique, it makes

a number of very questionable assumptions. Perhaps the most dangerous assump-

tion is that there exists a causal relationship between the recorded variables in the

database. In many cases, the presence of latent variables can give the illusion of

causality. A latent variable is any unrecorded feature that varies among recorded

units and whose variation in
uences recorded features. The result is an association

among recorded features not in fact due to any causal in
uence of the recorded fea-

tures themselves (40). The classic example of the presence of a latent variable is a

correlation that shows the crime rate of a given community rising with the number of

churches. While such an association may exist, it would be incorrect to assume that

one variable has a causal relationship to the other. Since automatically generated

BNs are built from the recorded data, the potential for misleading causal inferences

is high.

2.7 Rule Extraction

Rule extraction is an indirect form of rule induction. Speci�cally, instead of

learning classi�cation rules directly from the data, this method extracts rules from a
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Table 7 Bayesian Network Summary.

Characteristic Description

Search Method Open (can be deterministic or evolutionary).

Search Criteria Given a database (D) and a causal ordering of random

variables (Bs), maximize P (D;Bs).

Data Related Assump-
tions

Data must be discrete. Distinction between class and
data can be blurred.

Rule Related Assump-

tions

Rules are probabilistic in nature. The form of the gener-

ated rule set is heavily dependent on Bs.

classi�er already trained on the data. Once trained, a classi�er provides a mapping

from a set of input variables x1; ::; xd to an output variable y whose value represents

the class label !1; ::; !m (10). Thus the mappings embedded in the classi�er structure

are an approximation of the rules it uses to classify data. The di�culty of extracting

these rules is heavily dependent on the characteristics of the target classi�er.

A textbook example of the type of algorithm described above is the NeuroRule

system (84). NeuroRule mines rules from trained Multi-layer Perceptrons (MLPs),

a type of neural network4. In general terms, MLPs are statistical processors that

approximate the underlying distribution of the data. Figure 13 shows a three layer

MLP network, consisting of an input layer, a hidden layer, and an output layer. The

network structure is a system of nodes (activation functions) connected by weighted

connections. During training, the MLP learns the appropriate weights in order

to minimize the output error for a given set of inputs (i.e., the data set). MLPs

have proven to be very accurate classi�ers due to their ability to approximate non-

linear class boundaries. Unfortunately, the classi�cation rules learned by the MLP

are encoded into the structure of the graph and the weights that link the nodes.

Since these are numerical in nature, articulating the rules represented by the MLP

structure is a di�cult problem.

4Macy and Pandya (86) provide a comprehensive reference on neural networks.
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Feature #1

Feature #2

Feature #3

Feature #4

     Bias     

Hidden Layer

-- Each node implements an activation function.
-- Each connection has a weight.

Class #1

Class #2

Figure 13 A simple, fully connected Multi-layer Perceptron (3 layer, 4 input, 2

output).

Once an MLP has been successfully trained, NeuroRule prunes the network to

reduce its complexity while maintaining a minimum level of accuracy. Simplifying

the MLP is important because it reduces the possibility of extracting rules that

are overly complex, redundant or extraneous. Pruning is an iterative process which

involves removing connections whose weights fall below a given threshold. After

each pruning cycle, the MLP is retrained to determine if it still meets its minimum

accuracy. If it does, the threshold weight threshold is incrementally raised; if not, the

network from the previous cycle is restored and the pruning process is terminated.

After pruning is completed, classi�cation rules are extracted from the simpli-

�ed MLP. The activation thresholds of each hidden node in the network are recorded

(through testing) and clustered into discrete categories. A table is then constructed

in which all activation states for the set of hidden nodes is represented; the corre-

sponding network output value is also computed for each state. Sets of activation

values (SAVs) that produce a given output state are then derived. Through substi-

tution, these SAVs can be used to identify the input value ranges that produce the

corresponding outputs states. These input range - output state combinations can be

structured in IF/THEN form to provide the �nal set of rules. In practice, the rules
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yielded by NeuroRule are similar in form to those generated by C4.5 (105). Indeed,

the authors (Lu, Setiono and Liu) report producing smaller rule sets than C4.5, but

with a comparable level of accuracy (85). The principal disadvantage of NeuroRule,

however, is its lack of e�ciency with respect to C4.5.

In contrast to NeuroRule's top down approach, Rathbun (106) developed a

unique bottom-up approach to MLP design, known as the MLP iterative construction

algorithm (MICA). A distinguishing characteristic of MICA is the serial training of

hyper-planes to separate the classes using the Ho-Kaphyap method (29). Additional

hyper-planes are added until a classi�cation accuracy of 100% is achieved on the

training data. While Rathbun's intent is to use this technique to construct MLPs,

the hyper-planes can also be utilized for decision rule set construction. The drawback

here is that the 100% accuracy requirement may result in the generation of many

hyper-planes that are unrepresentative of the natural class boundaries.

A similar technique for constructing radial basis functions (RBFs) was devel-

oped by Wilson (151). The RBF iterative construction algorithm (RICA) uses the

Shapiro-Wilk metric (116) to determine how well a given data cluster �ts a Gaussian

distribution (129). If the �t is good, then the cluster is approximated with a single

RBF; if not, it is split up into separate (more Gaussian) clusters. This technique

iterates until all clusters are assigned an RBF. Once a set of satisfactory RBFs are

identi�ed, a geometric structure technique, such as a Gabriel Graph (65), can be

employed to generate hyper-planes to separate neighboring RBFs of di�ering class.

Of course, the e�ectiveness of this technique is predicated on assumption that the

data has a Gaussian distribution (which is often not the case).

2.8 Summary

While a wide spectrum of important decision rule induction algorithms were

covered in this chapter, it is far from a complete survey of the �eld. Nonetheless, a
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number of valuable insights have been gained into why induction algorithms can fail

to yield optimal rule sets. These factors include:

� The NP-complete nature of the problem.

� The greedy nature of the induction algorithm.

� Simplifying assumptions about the data (i.e., variables are discrete).

� Simplifying assumptions regarding the rule structure (e.g., conditions are equiv-

alent to univariate, linear partitions).

� Partitioning criteria which ignore the natural class boundaries.

� A tendency to over-�t the data.

Although some of these factors cannot be compensated for (i.e., the NP com-

plete nature of the problem), most represent opportunities for improvement through

better algorithm design. Consequently, speci�c strategies to rectify some of these

problems are incorporated in the GRaCCE algorithm (discussed in Chapter IV).
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III. Preliminary Issues

The focus of this research is mining compact decision rules from data. Just as the

di�culty of mining minerals is dependent on the geology of the target site, the

rule induction process is likewise in
uenced by the characteristics of the data set

being mined. This simple analogy motivates us to examine how these characteristics

impact the data mining process. The information presented in this chapter serves as

a primer on these issues for the technical approach described in subsequent chapters.

3.1 E�ects of Dimensionality

The features within a data set provide the information that make class discrim-

ination possible. Because of this, it is natural to assume that increasing the number

of features can always improve class discrimination. In practice, however, adding

additional features can actually lead to a degradation in classi�er performance (10).

Consider the problem of constructing a classi�er for a data set with d features

and M divisions per feature. Under these conditions, the classi�er must learn Md

mappings to be e�ective. For a data set of �nite size, fewer and fewer instances

can be assigned to each mapping as the number of features increases. Eventually, a

point is reached for every problem where insu�cient instances exist to learn a given

mapping. Bellman (8) termed this phenomenon the curse of dimensionality and

stated that as the number of input features increases, the number of feature vectors

must increase exponentially for accurate classi�cation.

Another consequence of high dimensionality is the di�culty of accurate pa-

rameter estimation. For example, when using a Gaussian maximum likelihood clas-

si�er (138), the mean and covariance matrix of each class are usually not known and

must be estimated from the training samples. For d dimensional data, the sample

covariance matrix is singular, and therefore unusable if fewer than d + 1 samples

are available from each class (29; 58). This is a problem for induction algorithms
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X1

X2

Figure 14 Comparative Feature Saliency.

(such as decision trees) which partition the data into smaller and smaller subsets;

eventually the number of samples in a subset becomes su�ciently small that the

partitions under-�t the data.

The above problems are often compounded by the fact that not all features

are created equal. The usefulness of a feature in discriminating between classes is

known as its saliency. In any given data set, some features may be good discrimina-

tors (high saliency), while others may not (low saliency). In the example shown in

Figure 14, feature X1 is highly salient while feature X2 has almost none. Retain-

ing features with low saliency is detrimental because it increases data requirements

while contributing little to the classi�cation mapping function. Even within the

subset of features with excellent saliency, there may exist features that are highly

correlated with each other. Maintaining redundant features is of marginal utility to

the classi�cation process.

3.2 Feature Selection

One of the surest ways to banish the curse of dimensionality is to reduce the

size of the feature set. The basic problem is this: given a data set containing d

features, how do we select the best subset of m features for performing classi�cation
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where m < d? Exhaustive search is not an option since �nding the best m features

for a problem of any reasonable size involves the evaluation of a prohibitive number

of possibilities. For example, selecting the best 10 out of a set of 20 requires the

evaluation of

0
@ 20

10

1
A or 184; 756 possibilities. As a result, more tractable approaches

for feature selection are necessary.

One approach is to evaluate the intrinsic saliency of a given feature. Perhaps

the most basic method for accomplishing this is the Fisher Discriminant (34). The

Fisher Discriminant for a two class problem is de�ned as

f =
(�1 � �2)

2

�21 + �22
(10)

This technique rates the saliency of a feature based on how far each of the class

means are separated relative to the spread of their variances. Thus, the larger the

f value, the better the class separation and, therefore, the more salient the feature.

A generalized F-ratio (for multi-class problems) is given by

F =
Variance of the means (over all classes)

Mean of the variances (within classes)
(11)

Additional saliency measures that expand on the F-ratio concept have been devel-

oped by Fukunaga (37).

While it is computationally e�cient to measure intrinsic saliency, these ap-

proaches have three fundamental disadvantages. First, the data are assumed to con-

form to a certain distribution (Fisher assumes a Gaussian distribution); of course,

the results su�er if this assumption is incorrect. Second, each feature is evaluated in

isolation; as a result, the e�ect of feature combinations are ignored. As mentioned
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earlier, if two features are both highly salient and correlated, then little new infor-

mation is provided by selecting both of them. Finally, because these approaches are

classi�er independent, they may fail to account for di�erences in the way speci�c

classi�cation algorithms process individual features.

The last disadvantage has led to classi�er-dependent approaches which select

feature subsets based on performance on speci�c classi�er algorithms. These meth-

ods evaluate a candidate subset by training a target classi�er using only the data

contained in the selected features. The winning subset is chosen based on criteria

that optimize classi�er accuracy while minimizing the number of features. Because

the classi�er must be trained for each candidate subset, it is much less e�cient

than the intrinsic methods discussed previously. Accordingly, classi�er-dependent

approaches have typically utilized classical search techniques such as forward search

and branch and bound (17). While these methods have the advantage of bounding

the search, they are not guaranteed to produce an optimal solution. In addition,

several researchers (103; 124; 153) have demonstrated the e�ectiveness of GA-based

stochastic search for feature selection.

3.3 Feature Extraction

Another strategy for minimizing the e�ects of dimensionality is to construct a

new, more e�ective, feature set from the existing one. The premise here is that there

exists a transform T to convert the original feature set (X) into another (X 0) which

has lower dimensionality and is more conducive to classi�cation,

One of the most fundamental feature extraction techniques is the Karhunen-

Lo�eve (KL) transformation (also known as principal component analysis) (10; 29).

The KL transform calculates the covariance matrix of the data set and �nds its cor-

responding eigenvalues and eigenvectors. Each of the eigenvectors (ui) is a transform

that acts on the original feature set to create a new feature; they are called princi-

pal components. The eigenvalue (�i) corresponding to each eigenvector denotes the
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Figure 15 Karhunen-Lo�eve Transform - Original two dimensional feature set is
projected onto eigenvector u1, which has the greatest eigenvalue.

variance of the data over each principal component. The number of signi�cant eigen-

values is taken as a measure of intrinsic dimensionality. The underlying assumption

here is that principal components with the largest variances make the best features.

Thus, the KL transform utilizes the eigenvalues as the basis for selecting the best m

features. Thus, the chosen eigenvectors are used to transform the original data set to

a new one. This concept is illustrated by Figure 15 where the two dimensional data

set is reduced to a single feature, representing the projection of data along eigenvec-

tor u1. Of course, as Figure 14 illustrates, there is no guarantee that features with

large eigenvalues are necessarily good class discriminators.

A more sophisticated feature extraction technique, known as Decision Bound-

ary Feature Analysis (DBFA), was developed by Lee and Landgrebe (80). This

approach winnows the data set using a k Nearest Neighbor (kNN) algorithm to re-

move data points that obscure the true class boundaries. With the classes more

clearly separated, the algorithm proceeds to identify all potential decision bound-

aries. A vector normal to each decision boundary is then computed. As Figure 16

illustrates, each of these vectors represent the direction of optimal class separation

for its respective decision boundary. The covariance matrix describing this set of

vectors is termed the E�ective Decision Boundary Feature Matrix (EDBFM). The
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Figure 16 The EDBFM is the covariance matrix of unit vectors normal to the class

decision boundaries.

EDBFM is used in a manner analogous to the covariance matrix in the KL transform

to derive a new feature set. The key di�erence is that the eigenvalues of the EDBFM

are far more accurate indicators of features that increase class separation.

Vafaie and DeJong (145) and Sherrah (117) have also demonstrated GA and

GP-based approaches, respectively, for evolving new feature sets. Despite the e�ec-

tiveness of these techniques, feature extraction is often undesirable in data mining

applications. This is due to the extreme di�culty of interpreting the meaning of

these new features in the context of the original domain. As a result, any rule using

these features tends to be incomprehensible to the end user. Since a fundamen-

tal goal of this research is to produce an understandable rule set, feature selection

remains the preferred approach.

3.4 Processing Very Large Databases

In addition to feature dimensionality, a data set can also be large with re-

spect to the number of instances it contains. Indeed, the use of tera-byte databases,

containing millions of instances, is becoming ever more prevalent in commercial ap-

plications (47). Processing these very large databases (VLDBs) poses a challenge for

the DRI methods discussed in the previous chapter for several reasons. First, these

methods are not linearly scalable with respect the to number of instances. Second,
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the DRI algorithms require that all or a portion of the data set remain permanently

in memory. This requirement causes these algorithms to execute far more slowly once

the data set size exceeds the available memory (due to page swapping between disk

and memory). Taken together, these factors limit the suitability of these algorithms

for mining VLDBs. A common solution to these problems is to process a subsample

of the VLDB (125). The principle disadvantage of this approach, however, is a loss

of classi�cation accuracy versus using all the data (14).

An alternative solution which addresses several issues in building a fast scalable

classi�er is the SLIQ decision tree algorithm (91). SLIQ handles disk-resident data

that is too large to �t in memory. Rather than resorting to sub-sampling, SLIQ

builds a single decision tree using the entire training set. SLIQ accomplishes this by

utilizing a memory-resident data structure (called the class list) which is a fraction

of the size of the actual data set. Even so, this structure can also over
ow memory

given a data set of su�cient size. The SPRINT system (114) (the successor to

SLIQ), further extends these database size limits by distributing both the processing

and data loads over N processors. Because SPRINT has proven to be extremely

fast and scalable, other researchers have developed variations on this system which

further enhance performance; these include the ScalParC (68), pCLOUDS (131),

and BASIC (154) systems.

Another issue linked to the processing of VLDBs concerns the multi-dimensional,

non-homogeneous structure of relational databases (RDBs). Treatment of this sub-

ject is particularly apt because the VLDBs used in modern applications are almost

exclusively RDBs. Unlike the 
at �le formats processed by the DRI techniques

discussed thus far, RDBs are organized in terms of composite data types known

as records. Each record serves as a descriptor for some type of object (i.e., per-

son, company, etc). A given RDB typically contains a multitude of di�erent record

types; records of like type are grouped together in base table structures. Di�erent
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record types are related through speci�c attributes (or keys) in their structure. A

comprehensive tutorial on the organization of RDBs is provided by Date (23).

The incongruity between the 
at-�le format needed by the DRI algorithm and

the structure of the RDB must be bridged in some manner. Given the diversity of

data in an RDB, it is unrealistic to assume that data can be mined without detailed

models (known as catalogs) of the RDB architecture and the target domain (i.e.,

how is one type of record related to another?). At a minimum, these catalogs are

needed to navigate the RDB in order to extract and format data for processing.

Thus, as part of preprocessing, structured query language (SQL) queries must be

performed to extract the relevant subset of data from the RDB. This data (which

can come from multiple base tables) is organized into a single, derived table. These

derived tables have the 
at �le format required for processing by the chosen DRI

algorithm. Because RDBs have the potential to yield a large, diverse set of derived

tables, mining RDBs can be a time consuming, highly iterative process.

3.5 Discrete Features

A wide variety of Machine Learning (ML) algorithms (such as Classi�er Sys-

tems (41)) exclusively operate on (or best with) symbolic domains. Features in such

domains are discrete; that is, they hold values which correspond to �xed categories.

For example, a discrete data type for weight could be fthin, normal, heavy, fatg.

When ML algorithms are applied to data mining problems, the data sets processed

often contain numeric features. In these cases, a discrete type must be created for

each feature, along with a mapping from the numeric to the corresponding discrete

values. Returning to the weight example, a mapping from numeric to discrete values

could be de�ned as: fthin = (90 � 140 lbs), normal = (141 � 200 lbs), heavy =

(201 � 250 lbs), fat = (250+ lbs)g.

The simplicity of the above example belies the di�culty of �nding a discrete

representation for a feature that is optimal. Perhaps the most basic approach is to
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Figure 17 Discrete mode categories created without respect to class.

categorize based on the number of clusters (modes) in the feature's data distribution.

Consider the two features depicted in Figure 17. Feature 1 has three very distinct

modes which can be easily mapped to discrete categories. In contrast, Feature 2

has a fairly uniform distribution; as a result, category de�nitions for this feature

are relatively arbitrary. Another complicating factor is the epistatic relationships

between features and class. This point is illustrated by Figure 18. Observe that while

Feature 1 has three distinct modes, choosing this con�guration degrades classi�cation

accuracy. In contrast, accuracy is optimized when Feature 2 is divided into two

categories; additional categories only result in unnecessary complexity. Also note

that these observations are only possible when both features are analyzed together.

Thus, if multiple features are necessary for class discrimination, the interaction of

their category de�nitions can have a signi�cant impact on classi�cation accuracy

and/or rule set complexity. For further reading on this subject, Fayyad and Irani (33)

analyze di�erent approaches to discretizing continuous-valued attributes for decision

tree algorithms.
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Figure 18 Discrete mode categories created with knowledge of class labels.

3.6 Modality of Data

Most data mining algorithms make some structural assumptions about the

data. In situations where there is little a priori knowledge of the data, such as-

sumptions (particularly relating to parametric distributions) may lead to poor or

meaningless results (29). This is especially true for data sets with multi-modal den-

sities. For rule induction problems, a class is multi-modal if it can be segregated

into two or more natural clusters. The classic example of multi-modal data is the

XOR data set shown in Figure 19. Multi-modal data sets have frequently proven

problematic for greedy rule induction algorithms. This problem was summarized by

Murthy (94) who noted: \the source of this di�culty is that the only information

available to the goodness measures used is the distribution of object classes across

the splits. However, building the ideal tree requires knowing that there are well

de�ned homogeneous clusters in the attribute space. Existing decision tree methods

cannot use any such structure information." Given this critique, it would appear

that the ideal rule induction algorithm should minimize assumptions and maximize

adaptability with regard to the structure of the target data.
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Figure 20 Over-�t class boundaries (left) tend to be more complex than those that

aren't (right).

3.7 Over-�tting and Training Set Composition

Classi�ers have a well established tendency to conform too closely to the pat-

terns in the training data. Such over-�tting results in poor generalization, character-

ized by extremely good accuracy on the training data, but degenerate performance

on the test set. In addition, solutions that over-�t the data tend to be more complex

than those that do not (51); Figure 20 depicts such a situation. These problems

make it obvious that over-�tting is a condition to be avoided.

The above discussion prompts the question: can anything be done to preempt

(or minimize the e�ect of) over-�tting? ML algorithms employ a variety of mecha-

nisms to control this condition. A technique known as early stopping (10) is used
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to prematurely halt neural network training at the �rst sign of over-�tting. When

evolving GP-based classi�ers, a complexity metric can be added to the objective

function to restrain the size of the GP (134). Over-trained classi�ers can also be

repaired. For example, Quinlan showed that decision tree pruning could decrease

tree size while improving tree accuracy (105). A comprehensive treatment of this

subject is also provided by Hand (51).

The composition of the training data set also impacts over-�tting. It has long

been an article of faith in pattern recognition that more training data equals better

performance (10; 29; 37). This belief is consistent with statistical methods (such

as the Maximum Likelihood (59)) where more data allows more accurate parameter

estimation. Yet, there is a growing body of evidence that suggests the contrary.

Indeed, several researchers report that a reduction in the number of training instances

results in a smaller rule set with equivalent accuracy (12; 67). Likewise, it has also

been shown that adding training data linearly increases rule set complexity without

an appreciable increase in accuracy (97; 98). These �ndings were validated on several

di�erent rule induction algorithms (18; 105).

Although research suggests that thinning the data set prior to training the

classi�er can help preempt over-�tting, it does not imply that winnowing can be

done blindly. A signi�cant factor a�ecting classi�er accuracy is the composition of

the training set. A number of researchers have found that di�erent subsets of a

given data set can yield substantially di�erent error rates for the same classi�cation

method (108). This variance in error increases as the size of the subset decreases (11;

75) and/or the dimensionality of the data is high (28). Clearly, classi�er accuracy

can su�er if the training set is too large or too small.

A balance between these two extremes can be achieved by eliminating data that

contribute little to classi�cation accuracy. A large body of work exists to support this

contention. Wilson (150) shows that the edited Nearest Neighbor technique resulted

in error reduction. Devijver and Kittler (27) took this one step further by proving
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this procedure is asymptotically Bayes-optimal with respect to the original data set.

Experiments by Oates and Jensen (97) show that removing misclassi�ed instances

from the data set outperforms random winnowing of the training data. In addition,

Aha (3) demonstrated that �ltering instances based on records of their contribution

to accuracy improves the accuracy of the resulting classi�er. This strategy has the

advantage of denying the classi�er the opportunity to learn class outliers (data on the

wrong side of the Bayes decision boundary). Such data is often easily misclassi�ed

and, therefore, is of questionable value; mislabeled samples may also fall into this

category (12). The marginal reduction in training set size achieved by removing such

noisy data shows promise as a way to provide an e�ective shield against over-�tting.

3.8 Missing Data

Real-world data is rarely perfect. In particular, many o�-the-shelf data sets

contain instances where attribute values are missing from the data. Processing such

data sets is a challenge for any data mining algorithm. Many researchers have

addressed the problem of compensating for missing data; a few of these solutions

are summarized here. The simplest approach is to merely remove instances with

missing data (36). Although e�ective for situations where a wealth of data exists,

this approach may lead to serious biases in the presence of large amounts of missing

data (83). In addition, it may not be practical when the amount of data available

is fairly small. In the latter case, it is essential to make full use of the information

available in the incomplete samples.

If we want to retain the missing instances, we must select a strategy for re-

placing the missing attributes. Simple replacement strategies include substituting a

default value (i.e., 0). This naive approach can alter the natural cluster structure

of the data by creating additional modes (39). For data mining applications, this

could lead to the induction of non-existent rules. Little and Rubin (83) describe

approaches that estimate the missing value from the mean of the observed values
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for the missing attribute (mean imputation) or by sampling from the unconditional

distribution estimated from the observed values (hot-deck imputation). While easily

implemented, each of these methods is biased because they treat the replacement

value as the actual missing value (121).

Perhaps the best techniques are those that develop integrated models for the

missing attributes and base inferences on the likelihood given by those models (10).

One such technique is the Expectation Maximization (EM) algorithm developed by

Dempster (26). This algorithm iteratively develops a model of data composed of a

mixture of di�erent Gaussian distributions. Ghahramani and Jordan (38) propose

updating the missing data in conjunction with the EM algorithm. In particular,

the missing data is re-estimated every time the distributions are changed. Updating

continues until the estimated error stabilizes.

Another option is a Monte-Carlo type simulation technique called multiple

imputation (113). This method generates m > 1 simulated values for each miss-

ing datum. The resulting m versions of the data are then analyzed by standard

complete-data methods and integrated into a single model (such as a Bayesian net-

work (121)) which captures uncertainty information about the potential replacement

values. From a practical standpoint, however, it is unrealistic for non-Bayesian rule

induction algorithms to maintain multiple versions of the data; a single replacement

value for each missing datum must be chosen. Unfortunately, such a change rein-

troduces bias, e�ectively negating the primary advantage of these computationally

expensive approaches.

3.9 Normalization

One of the most common forms of input preparation is normalization of data.

Normalizing an attribute scales its values so that they conform to a normal distribu-

tion with zero mean and unity variance, denoted by N(0; 1). Equation 12 converts
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an the ith attribute of a database (Xi) to its normalized form, X�

i
for the jth feature

vector.

X�

i
(j) =

Xi(j)� �i
�i

(12)

The advantage of normalization is that it �lters out the wide variations in val-

ues caused by di�erences in data types. For example, in a given feature vector, one

attribute X may range in value from 0 to 1, while attribute Y may range in value

from �1000 to +1000. In a k Nearest Neighbor (kNN) algorithm, normalizing the

data prevents one attribute from unfairly biasing the Euclidean distance calculation

between di�erent feature vectors. With respect to neural networks, normalization

ensures that the network weights can be initialized (and updated) in a similar man-

ner. If normalization were not performed, su�ciently large inputs would saturate

the network, making its output unreliable.

Despite its advantages, normalization is not always desirable. Consider the

data in Figure 21. Before normalization, the two classes are linearly separable;

afterwards, they are not. From a data mining perspective, when interpreting decision

rules generated from normalized data, it is crucial to take into account how each

attribute is scaled. This requirement can add signi�cantly to the di�culty of this

task since the normal distribution is a non-linear function. Given this, the decision

to normalize data should be an informed one.

3.10 Identifying Interesting Information

While the current generation of data mining algorithms excels at �nding pat-

terns in data, in many ways this is half the battle. One of the fundamental problems

with many data mining tools is that they can yield a glut of �ndings, most of which

are of no interest to the user (101). Thus, it is often necessary for a human to
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Figure 21 Normalization can sometimes impair separability.

sift through the mined information. Needless to say, this is long and tedious work.

Consequently, a number of researchers have been working on metrics which rate the

interestingness of the discovered patterns. The end goal of this research is to produce

systems which can automatically mine information that is of vital interest to the end

user.

Research in this area falls into two main categories: subjective and objective.

Subjective techniques use information (i.e., a knowledge base) about the domain

described by the database to determine the interestingness of a given pattern. For

example, Silberschatz and Tuzhilin (120) tag a pattern as interesting if it is either

unexpected or actionable. An unexpected pattern is contrary to the �rm beliefs of

the user (represented by using a Bayesian network). Actionable patterns are those

that impact conditions that the user can change. Along a similar vain, Piatetsky-

Shapiro (102) identi�es interesting patterns based on deviations between an observed

value of a measure (extracted from the database) and a reference value. This tech-

nique requires the user to specify a domain speci�c reference value that is used as

a basis for comparison. In addition, thresholds must be speci�ed to identify when

a deviation becomes signi�cant. The use of deviations is a simple way to identify

things that di�er from our expectations; the author argues that it is this quality that

makes information interesting.
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Another subjective approach (73) uses prede�ned templates to indicate rela-

tionships of interest to the user. These templates are similar in nature to Structured

Query Language (SQL) queries; results (in the form of association rules) matching

these templates are reported back to the user. Lastly, Han and Fu (50) use di�er-

ences in expected con�dence and support based on an association rule's position in

its concept hierarchy to assess interestingness. For example, large support is more

likely to exist at higher levels in the concept hierarchy (such as milk and bread)

rather than at lower ones (such as a particular brand of the above). Any association

rules that deviate from this expected pattern is considered interesting. Such subjec-

tive approaches best re
ect the user's preferences when the underlying models are

comprehensive, complete and accurate. Of course, insuring this requires a great deal

of preparation, even for relatively simple domains. As a result, subjective metrics

are not suitable for general purpose rule induction techniques.

An alternative to these labor-intensive approaches is to measure interestingness

based entirely on statistical regularities in the data. These types of objective metrics

are appealing because they are domain independent. Chan and Au (13) developed

one such measure, called adjusted di�erence. Given an association rule X ! Y ,

this metric determines if the P (XjY ) is signi�cantly di�erent from P (X). If this

condition is true, then the association between X and Y is deemed interesting.

The most commonly used objective measurements, however, are the con�dence and

support metrics discussed in Section 2.5. For supervised classi�cation problems,

decision rules of most interest are those that isolate large class homogeneous regions

within the data. Such rules are characterized by high levels of support (coverage)

and con�dence (purity).

3.11 Summary

This chapter addresses how the characteristics of the underlying data set can

impact the data mining process. In addition to understanding the problem, however,
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strategies are introduced that can improve the processing of di�cult data. Some of

the strategies covered include:

� Feature selection as a means of avoiding the curse of dimensionality.

� Winnowing the data set to minimize over-�tting.

� Techniques for the replacement of missing data.

� The mining of interesting rules .

Subsequent chapters apply the principles discussed here to design and assess

the performance of a new decision rule induction algorithm.
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IV. Overview of the GRaCCE Algorithm

The purpose of this chapter is to provide a detailed development and description

of the Genetic Rule and Classi�er Construction Environment (GRaCCE). This is

accomplished by explaining the mechanics underlying each phase of the algorithm.

A secondary goal is to furnish insight into why key design decisions were made.

Throughout this chapter, diagrams and examples are liberally utilized to illustrate

how the system performs decision rule induction. These are supplemented by mate-

rial in Appendices B and D which, respectively, contain summaries of the algorithm

parameters and notation discussed in this chapter.

4.1 Introduction to GRaCCE

The review of existing decision rule induction (DRI) algorithms (Chapter II)

and pattern recognition issues (Chapter III) has provided crucial insight into the

state-of-practice in these areas. The number and diversity of methods make it clear

that no single method is universally recognized as superior to the others; the No

Free Lunch theorem (152) has provided a theoretical con�rmation of this obser-

vation. With this in mind, it makes sense that any new paradigm should (where

applicable) adopt approaches found in the better techniques while avoiding their

pitfalls. Based on the previously discussed material, the following are desirable DRI

algorithm characteristics:

� The use of random or evolutionary search techniques.

� Classi�cation rules are based on the natural class boundaries.

� Make a minimumnumber of assumptions regarding the structure of the induced

rules and/or the data.

� Remove noisy or easily misclassi�ed instances from the training data set.

� Incorporate a method of simplifying the induced rules.
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� Run-time execution performance scales linearly as the size of the processed data

set is increased. Additionally, the algorithm should decompose the problem

such that it can be solved with a high degree of concurrency.

While some of the methods covered in Chapter II have one or more of these

characteristics, none possess all of them. It would therefore be interesting (from

a research standpoint) to design an algorithm that combines these attributes in a

synergistic manner and measure its resulting performance. In order to be competitive

with other rule induction methods, the algorithm also needs to meet the following

additional design goals:

� Be a general purpose rule induction method, capable of processing a variety

of di�erent types of data sets without any prior knowledge of the problem. In

particular, the system must be able to successfully process data sets that vary

with respect to number of classes, features, modes and instances1.

� Generate decision rule sets that are compact and simple with respect to those

produced by other rule induction methods.

� The algorithm must achieve a level of accuracy that is roughly equivalent to

that of other classi�cation techniques when given the same data.

� The system must be robust with respect to user selectable parameters. For

example, making a small change to a given parameter will not cause the results

to be radically di�erent.

� The algorithm's architecture can be easily parallelized.

GRaCCE was designed in accordance with these goals. The system harnesses

the power of evolutionary search to mine classi�cation rules from data. These rules

are based on class boundary estimates generated from a simpli�ed version of the data

set. A search is then performed for combinations of these partitions that enclose class

1The fundamental assumption here is that data of the same class is clustered together in some
fashion.
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Table 8 Synthetic Data Set Descriptions (2 Feature)

Name Classes Instances Special Case

SYN01 3 400 Overlapping classes.

SYN02 2 200 Iterative partition generation.

SYN03 5 1000 Solvable with global partitions.

SYN04 2 1000 Multi-modal data

homogeneous (CH) regions in the data. These regions are re�ned further and used

to generate a �nal rule set for classifying the data. Thus, the GRaCCE algorithm is

de�ned in terms of six distinct phases: preprocessing, partition generation, data set

approximation, region identi�cation, region re�nement and partition simpli�cation.

The sections that follow provide an in-depth description of GRaCCE in terms of these

phases. In addition, examples are provided which illustrate how GRaCCE processes

special conditions (modeled by the synthetic data sets described in Table 8).

4.2 Preprocessing Phase

The purpose of this �rst phase is to prepare the data for subsequent phases

of the algorithm. The two primary preprocessing operations that accomplish this

(feature selection and winnowing) are described in the subsections that follow. Of

these two operations, only winnowing is mandatory. Note that other preprocessing

operations (such as generating missing data) are not part of GRaCCE due to the

unique requirements of each data set.

4.2.1 Feature Selection. In this �rst phase of the algorithm, we perform

feature selection to reduce the data set's dimensionality. Recall from discussion in

Section 3.2 that removing unnecessary features is one of the surest ways to mitigate

the curse of dimensionality (8) during training and also simpli�es the structure of

the decision rules. GRaCCE o�ers a number of feature selection algorithms including

a deterministic forward-search (DFS), a GA-based search, or a hybrid of the two.

The DFS method sequentially searches for the smallest feature set that minimizes
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the error rate of a k Nearest Neighbor (kNN) algorithm. Starting with an empty

feature set, DFS chooses the feature that most reduces the kNN error. The selected

feature is added to the feature set. On subsequent iterations, candidate features are

evaluated in conjunction with the existing feature set. This process continues until

the error rate cannot be improved by adding additional features to the set. At this

point, the DFS returns the current feature set.

While e�ective, the DFS is not without shortcomings. For example, its time

complexity is quadratic (i.e., O(nd2)) with respect to the number of features (d).

In addition, its greedy approach may cause superior combinations of features to be

overlooked. To compensate for these factors, DFS is augmented by a relatively simple

GA-based approach developed by Sklansky and Siedlecki (124). In this technique,

the GA's binary chromosome structure is organized by mapping each feature to a

separate gene. The value of each gene's allele determines if the associated feature

is ignored (0) or utilized (1). The GA's objective function evaluates the feature

set represented by each individual; the �ttest individuals are those that achieve the

best classi�cation accuracy on the kNN algorithm with the fewest enabled features.

When the GA terminates, the dimensionality of the data is reduced by eliminating

those features disabled in the �ttest individual.

The hybrid method combines elements of the two previous techniques. It

begins by performing an abbreviated DFS to identify the best ds features (where

ds � d). In preparation for a more comprehensive feature search, a GA population

is randomly generated. The bits representing the DFS features are then set in each

member of the GA population. The motivation here is to better focus the GA search

using a promising schema. Once the population is modi�ed, the GA is executed as

indicated in the previous paragraph.

4.2.2 Winnowing. Class overlap within a given data set can impede the

rule induction process and degrade the quality of the generated rule set. It is there-
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fore desirable to make the classes piecewise, linearly separable. Wagner's edited

nearest neighbor technique (147) provides an elegant way of accomplishing this goal.

Wagner's method removes data points from the training set that are misclassi�ed by

a kNN algorithm. This process continues until it converges to a subset of the data

with no classi�cation error. Devijver and Kittler (27) proved that this procedure

is asymptotically Bayes-optimal with respect to the original data set. Figure 22

illustrates how this approach can improve class separation for a synthetic data set.

Winnowing can be performed on either the full feature set or on a speci�ed fea-

ture subset. As an added bene�t, there is evidence showing that this procedure

contributes to a reduction in rule set size (refer to Section 3.6).

4.3 Partition Generation Phase

The objective of this phase is to generate a set of partitions su�cient to separate

the classes in a given data set. Let 
 denote the data set and !i be the subset of 


belonging to the ith class. A class partition is any hyper-plane separating two distinct

classes (!i and !j). We now extend the notation, such that � represents the set of all

generated partitions and 
i denotes the subset of partitions associated with the ith

class. Because these partitions are the basis for evolving CH regions, it is extremely

important that they re
ect the natural class boundaries. To ensure this, GRaCCE

uses a two pronged approach such that both global and local class partitions are

generated. The rationale for and speci�cs of this approach are discussed in the

sections that follow.

4.3.1 Fundamentals of Partition Estimation. In order to generate a par-

tition separating two classes, it is necessary to estimate the probability distribution

of each class from an appropriate set of samples. The sample set can vary in size

from a few points to all points in each class. The statistics required for the class

distribution estimate are the mean (�) and covariance matrix (�). From these,

partition separating the classes can be computed. We de�ne such a partition as a
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Figure 22 Data Set SYN01 before (above) and after (below) the Winnowing op-
eration.
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the covariance matrices needed to estimate the 
Bayes optimal decision boundary.

Partition

    Class specific
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Figure 23 Partitions are generated to separate boundary point pairs.

hyper-plane function (h) composed of an anchor point (X0) through which h passes

and a vector normal to the plane ~vN ; these components are de�ned by Equations 13

and 14, respectively. If �i and �j are on di�erent sides of the decision boundary,

then X0 lies along the line connecting these points such that h(X0) = 0. Thus,

Equation 15 can be used to determine the position of a given point X with respect

to h. Figure 23 shows a partition generated to separate two classes. While other

non-deterministic methods, such as perceptrons (10), could be employed to gener-

ate the partitions, this deterministic method consistently yields a decision boundary

that better approximates the Bayes decision boundary.

X0 = uV + V0 (13)
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where:
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h(X) = ~vN(X �X0)
0 (15)

4.3.2 Global Partition Generation. Global partitions are those generated

from sample sets composed of all data for a given class. In this mode, GRaCCE

computes a single, linear partition separating each pair of classes. These types of

partitions are useful because they re
ect the shape of the entire distribution of each

class (estimated from its covariance matrix) (29); this is something locally derived

partitions cannot do. Using this approach on a data set withm classes results in a set

of m(m� 1)=2 partitions. In some cases, the partitions generated in this mode can

sometimes be su�cient to completely isolate each class. Figure 24, which contains

only global partitions, is an example of such a case. Observe that it is still possible
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Figure 24 Global Partition Generation for Data Set SYN03.

to seal each class o� from the rest of the data using the sparse set of generated

partitions.

4.3.3 Local Partition Generation. As might be expected, only the most

trivial of classi�cation problems can be solved using global partitions alone. In fact,

for some data sets they may be totally unusable. Consider the data set depicted in

Figure 25. Since the modes of both classes are interleaved in a checkerboard pattern,

their mean and covariance matrices are virtually identical. Consequently, any global

partitions generated from this set is meaningless. It therefore becomes necessary to

generate other types of partitions to augment the global set.

The solution to this problem is to generate additional partitions which approxi-

mate class boundaries between adjacent boundary points of di�ering class. Partitions

in this category are applicable only to a local region of the data set. When there

is signi�cant class overlap, as in the original SYN01 data set (see Figure 22), many

71



0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 25 The interleaving of class modes in SYN04 renders global partitions use-

less.

partitions are generated which do not re
ect the natural class boundaries. Fortu-

nately, the winnowing operation reduces the number of candidate boundary points

by making the classes linearly separable. As a result of this operation, the number

of generated partitions is much lower than it would otherwise have been. In addi-

tion, the quality of the partition estimates is substantially improved because they

are based on data with a solid degree of membership in each class.

De�nition 1 - Boundary Point. Let the function D be the Euclidean distance

between two arbitrary feature vectors. Let z and y be members of classes !i and

!j , respectively. Instance y is a boundary point with respect to z i� D(z; y) =

minfD(z; �) : � 2 !jg. Let � and �t denote the set of boundary points for the

entire data set (
) and some class (!t), respectively.
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- Class 1
- Class 2

z x

y

-- y is a boundary point since is the closest point in Class 2 to z
-- x is the closest point in Class 1 to y.
-- As a result, (x,y) is designated a boundary point pair.

Figure 26 Generation process for boundary point pairs.

De�nition 2 - Boundary Point Pair. Let x be a points in !i and y be a bound-

ary point in !j such that D(x; y) = minfD(�; y) : � 2 !ig. When this condition is

satis�ed, points x and y are said to be a boundary point pair.

The �rst step in generating local partitions is locating the boundary points

(as described in De�nition 1) for each class in the winnowed data set. Next, a list

of boundary point pairs is compiled using De�nition 2. Each pair consists of two

points, (x; y) belonging to di�erent classes (x 2 !i and y 2 !j). Figure 26 provides a

visual illustration of these de�nitions. This approach enables GRaCCE to generate

class partitions for highly multi-modal data con�guration; examples that support

this contention are shown for data sets SYN01 and SYN04 in Figures 27 and 28,

respectively.

4.3.4 Su�ciency of the Partition Set. In order for the GRaCCE algorithm

to succeed, the generated partition set must be su�cient to isolate each boundary

point in a CH region (of the same class). The upper half of Figure 30 illustrates

a case where the initial partition set does not meet this requirement. Note that

the position of the middle two clusters is such that De�nitions 1 and 2 fail to yield
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Figure 27 Set of Generated Partitions for SYN01
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Figure 28 Set of Generated Partitions for SYN04
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- Given the sets: 
, �, and �.
b = Next(�);
while (b = ;) do

- Create a new partition set, �0, such that:

8h 2 �; h(b) � 0.

- Compile a list of data points, S, composed of all x 2 
 such that:

8h 2 �0; h(x) � 0.

if (8x 2 S, class(x) = class(b)) then:
b = Next(�);

else

- Generate a set of boundary points and partitions for S.
- Append these to � and �, respectively.

end; %while
return �, �.

Figure 29 Iterative Partition Generation Algorithm.

a partition separating them; consequently, these clusters cannot be enclosed. To

remedy this situation, the partition generation process must continue until su�cient

partitions are generated to enclose each boundary point in its own CH region.

The process to accomplish this (described by the pseudocode in Figure 29)

is performed as follows: given a boundary point b 2 �t, all partitions associated

with the target class (
t) are used to form a convex region isolating b. If the subset

of data in this region contains instances not belonging to !t, additional boundary

points and partitions are generated to rectify this condition2. This process iterates

until a CH region can be formed for each boundary point using the existing partition

set. The lower half of Figure 30 shows the additional partition added as a result of

this procedure. As a result, the �nal partition set is su�cient (but not uniquely so)

to separate all boundary points of di�ering class.

2These additional boundary point and partitions are generated using all the entire winnowed
data set - not just the enclosed subset.
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Figure 30 Initial (above) and Final (below) Partition Sets for Data Set SYN02
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De�nition 3 - Boundary Point Weighting Function (�). Given a class !t,

and a boundary point b 2 �t, the weight for b is computed as:

�(b) =
1

j!tj
X
x2!t

�(x); where: �(x) =

8<
:

1; if D(b; x) = minfD(�; x) : � 2 �tg

0; otherwise

9=
;

4.4 Data Set Approximation

Many pattern recognition techniques take advantage of the fact that not every

point in a data set is essential to classi�cation (22). Since the boundary points in

the winnowed data set lie along the borders of the CH regions we seek, the data set

can be approximated by �. This is conceptually analogous to the way a skeleton

outlines the shape of a body. Since the set of � is typically a small fraction of the

total number of training points, using it as the basis for the CH region search results

in a signi�cant acceleration of the algorithm. In order to make the best use of �, we

complement it with an estimate of the relative importance of a given boundary point

(b) within its assigned class. This estimate is provided by a weighting function (�)

which is speci�ed in De�nition 3. The value returned by �(b) represents the relative

density of class data around boundary point b.

An alternative to this method is the PLEASE system (74), which is a Pittsburgh-

style (127) genetic-based machine learning system for learning class prototypes. A

class prototype is a set of exemplars which can be used as a substitute for the class

data in a kNN algorithm. In particular, the GA uses a variable length, real- val-

ued chromosome to evolve a set of prototypes for a given data set. As might be

expected, the computational complexity of this approach becomes prohibitive as the

dimensionality of the data set increases. Indeed, the authors hint at this problem

and the PLEASE system is only demonstrated on relatively simple, two-dimensional

data sets.
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De�nition 4 - GA Chromosome Structure (I). This is the template for the

binary chromosome (~a) used in the GA search for a CH region of class t (~a 2 I). The

characteristics of I are determined by boundary point (b) chosen as the focal point for

the search. It consist of three components: l; fm; fo. The l component is the length

of the binary vector, which equals the number of partitions used in the search. The

fm component is the mapping function between chromosome ~a and the partitions in


t it represents. The fo component is the function that returns the orientation of

each partition (value = �1) with respect to b. Thus the jth partition (hj) in the

chromosome is equivalent to fo(j)fm(j), such that hj(b) � 0.

De�nition 5 - Region. Given a binary chromosome ~a 2 I, then the region repre-

sented by ~a ([~a]) is de�ned as: [~a] = fp 2 <djhj(p) � 0, 8j 3 ~a(j) = 1g.

4.5 Region Identi�cation Phase

The region identi�cation (RI) phase is the centerpiece of the GRaCCE algo-

rithm. It consists of a series of searches to identify the set CH regions (R) within

a given data set. The primary resources required for this search are the generated

boundary point and partition sets. The objective of each search is to �nd a set of par-

titions that isolate boundary points belonging to a given class with a user-speci�ed

degree of purity (�min). Each search begins by selecting a target class !t. To �nd

a CH region in class !t, the boundary point (b) with the greatest weight is chosen

from �t as the focal point for the search. The pseudocode describing this phase can

be found in Figure 32.

Genetic Algorithms are used as the primary search engine for the RI phase.

There are a number of compelling reasons for this choice. Perhaps the most funda-

mental is that GAs have proven to be extremely e�ective in �nding good solutions

for combinatorial optimization problems (41). For most optimization problems, the

search space is large enough to make exhaustive search methods impractical (95).

Unlike search algorithms which incrementally develop an optimal solution, such as
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A� (109), GAs maintain a ready pool of �t solutions. As a result, GAs can return the

best, complete solution at any given time. This characteristic is important because

GRaCCE may not have a great deal of time to spend on each CH region search.

In preparation for each search, a GA chromosome structure (I ) is organized

as described in De�nition 4 for each chosen boundary point. The purpose here

is to construct a template that enables each individual in the GA population to

represent a CH region. This task is accomplished by assigning a speci�c partition to

each gene in the chromosome. The binary allele of the gene denotes the partition's

status (0 if disabled, 1 if enabled). Thus the region de�ned by each individual (~a 2

I ) in the GA population (P ) is determined by which of its partitions are enabled.

Figure 31 provides an illustration of how the class partitions are represented in the

GA chromosome structure. In addition, De�nition 5 is used to determine if a given

point is a member of the region, as represented by some individual ~a.

For any given CH region search, there are a number of steps that can help limit

the size of the search space. First, the GA chromosome need only include partitions

in 
t; all others are irrelevant. Partitions in this set are sorted in ascending order

based on the distance of their anchor point to b. This arrangement enables the search

to be restricted to the closest partitions if the number under consideration exceeds

a speci�ed threshold. The implicit assumption here is that the further a partition is

from b, the less likely it is that the partition de�nes a CH region containing b. Lastly,

all partitions are assigned an orientation transform (of �1) to insure that h(b) � 0;

this transform is incorporated into the mapping function, fm. Since this makes it

unnecessary to represent a partition's correct orientation in the GA chromosome

structure, the search space is signi�cantly reduced.

Once I is de�ned, a deterministic search is performed to �nd a CH region

(~z) that, at a minimum, contains b; the pseudocode for this algorithm is shown

in Figure 33. Because this procedure is greedy, there is no assurance that ~z is

optimal in terms of �tness. It does, however, serve as a good starting point for each
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evolutionary search. Using a variation of Eshelman's random restart technique (31),

GA population is initialized such that half of its individuals are mutations of ~z;

the remaining individuals are randomly generated. Early experiments showed this

approach produced better solutions in a shorter amount of time (as compared to

using a completely random initial population). Although this practice biases the GA

toward a speci�c area of the search space, as a practical matter GRaCCE cannot

a�ord to conduct an extensive search for every region. Approaches such as Fast

Messy GAs (43) are extremely e�ective, but have too much overhead for this problem.

Thus, the GA performs a limited search for a better solution (~x) than the original.

The e�ectiveness of using a stochastic search to improve an existing solution was

previously demonstrated by the OC1 decision tree algorithm (94). If the GA cannot

accomplish this within a �xed number of generations (q), it defaults back to ~z.

The GA searches for solutions that minimize the objective function (�) de�ned

by Equations 16 thru 18. Within this function, �1(~a) is the proportion of class !t data

contained in the region de�ned by ~a. The term �2(~a) denotes the complexity of the

region in terms of the number of partitions that bound it. As indicated earlier, the

boundary point weights are used to estimate the proportion of data in ~a belonging

to each class; we denote this result for the ith class as �i(~a). If �t(~a) < �min, we

compute �tness using a graded penalty function. This strategy drives the GA to seek

a solution that maximizes coverage of the target class with a minimum of complexity.

The graded penalty function enforces the user's homogeneity requirement without

losing good schema contained in unacceptable solutions (126). Figures 34 through 36

show the SYN01 class partitions chosen by GRaCCE to isolate classes 1 through 3,

respectively.

�1(~ak) = 1 �
j�tjX
i=1

8<
:

�(bi); if bi 2 [~ak]

0; otherwise

9=
; (16)
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�2(~ak) = min(0:05; 1=l)

lX
j=1

~ak(j) (17)

�(~ak) =

8<
:

�1(~ak) + �2(~ak); if �min � �t(~ak)

2� �t(~ak) + �2(~ak); otherwise

9=
; (18)

When the search has completed, the �tness of the best region found (~x) is

evaluated. If its �tness falls below 1:0, then the training data enclosed within ~x are

formally assigned to it and the region is then appended to R; otherwise, b and ~x are

discarded. After each search, the list of unassigned boundary points contained in �t

is updated. Additional CH region searches are conducted until all boundary points

in �t have been assigned (i.e., unassigned(�t) = ;). The algorithm then repeats this

procedure for all remaining classes. Once all classes are exhausted, the �nal set of

regions is returned.

4.6 Region Re�nement Phase

The purpose of this phase is to improve the regions found in the previous phase.

To accomplish this, each region (~a) is evaluated in three ways. First, the CH regions

are re�ned by removing extraneous partitions. Each boundary enabled in ~a is tested

to ensure it contributes to �(~a). If removal of the boundary causes no degradation in

�tness, it is no longer mapped to the region. When all regions have been processed,

all unused partitions are expunged from the system.

The next step is to �lter out regions which are both small (in terms of coverage)

and de�ned by a disproportionate number of partitions. To this end, a region utility

ratio (RUR) is computed for each region using Equation 19. In general, this metric

yields small values (less than 0:01) for regions of poor quality, with values increas-
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% SYMBOLS:

b : Selected boundary point.
l : Number of generated partitions.

m : Number of data set classes.
p : Size of GA population.

q : Convergence window size (in generations).

P : GA population.
R : Region set.
�t : Set of unassigned boundary points for !t.
I : GA Chromosome structure.

% PSEUDO-CODE:

R = ;;
for t = 1 to m do,

while (unassigned(�t) 6= ;) do
b = max(weights(unassigned(�t)));
- Organize GA Template, I.
[~z] = Greedy Search(I );
- Initialize P = f~a1:::~apg 2 I.
- Evolve P for q generations.
~x = ~ak 3 �(~ak) = min(�(P ))
if (�(~x) � �(~z)) then

~x = ~z;
else

- Search until �(~x) is constant for q+ generations.

end; %if

- Update R and �t based on ~x.
end; %while

end; %for t

return R;

Figure 32 Region Identi�cation Phase Algorithm
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function [~z] = Greedy Search(I )

~z = f1gl; % Enable all partitions.

s = �(~z); % Compute the initial �tness.

% Disable any partitions which do not improve �tness.

for i = 1 to l do
~z(i) = 0;

if (�(~z) > s) then
~z(i) = 1;

else

s = �(~z);
end; %if

end; %for i
return ~z;

Figure 33 Greedy Search Algorithm for the Initial CH Region
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Figure 34 SYN01 Partitions selected for Class 1
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Figure 35 SYN01 Partitions selected for Class 2
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Figure 36 SYN01 Partitions selected for Class 3
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Figure 37 Partitions selected for SYN04

ing with region quality. The RUR for each region is compared to a user-speci�ed

threshold (RURmin); regions whose RUR fall below this threshold are eliminated.

Removing these regions is akin to the procedure used to prune decision trees in that

it helps avoid over-training while reducing unnecessary complexity. Unlike pruning,

however, it takes into account the complexity of the region. Another di�erence is that

instances in deleted regions become orphan data in that they are not assigned to any

class. While this may appear to unnecessarily increase the error rate, a method for

classifying orphan data is discussed in Section 4.9.2. Of course, a simpler alternative

is to retain all found regions and let the user �lter out those deemed inconsequential

(due to insu�cient membership).

After completion of the �rst two procedures, the set of regions is considered to

be complete. The �nal step in the re�nement process is to recompute the covariance

matrix of each region based on the data points assigned to it. With the updated

covariance matrix, Equation 15 is used to adjust the orientation of each partition
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to better re
ect the boundaries of the regions they separate; only those adjustments

that improve the classi�cation accuracy of the training set are retained.

At the conclusion of this phase, we are left with a set of regions, a list of

partitions, a mapping of regions to partitions and a mapping of data to regions.

Because each region is separated from the rest of the data space by the partitions

that bound it, each region can be treated as a rule for classifying the data and each

of its partitions as conditions of that rule.

RUR(~ri) =
�t(~ri) � �t(~ri)
1
j�j

P
j
j~ri(j)j

(19)

where:

t: Target class index for the ith region.

�t: Proportion of class !t enclosed by the ith region.

4.7 Partition Simpli�cation Algorithm

In the baseline GRaCCE algorithm, all partitions are speci�ed with respect to

all d dimensions. For large feature sets, this can result in rules with very complex

conditions. It is therefore desirable to simplify these partitions to the maximum

degree possible without signi�cantly degrading the accuracy of the rule set. This

goal is accomplished using a partition simpli�cation algorithm (PSA) based on the

backward deletion process developed by Breiman (11) for the CART algorithm.

The PSA (summarized in Figure 38) eliminates those terms that are not essen-

tial to the partition. This determination is based on the degree to which classi�cation

error (�) is increased by removing a given term from a partition. The increase in �

caused by removing the jth term from the partition is denoted as (�)+
j
; this di�erence

is measured for each non-zero term in the partition. Two user speci�ed parameters
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provide the thresholds needed to determine if the partition can be simpli�ed further

based on these measurements. The �rst parameter (�) limits the absolute increase

in error resulting from a given change. The second parameter (�) provides a ratio

of (�)+
min

to (�)+
max

for a given partition. The actual ratio must be less than this

threshold in order for the min term to be removed. When the PSA completes, the

proportion of partition terms removed from the rule set is measured; this metric is

referred to as the degree of partition simpli�cation (DPS).

This modi�ed algorithm di�ers from Breiman's in several important ways. The

�rst is the scope of testing required for each changed partition. Since CART is a

decision tree algorithm, each partition implements a di�erent node in the tree. This

structure enables Breiman to restrict testing to a subset of the data assigned to a

given node. Unfortunately, this approach is not feasible here since a given partition

may bound multiple regions. As an alternative to computing � based on the entire

training set, the set of weighted boundary points is used to approximate the overall

error. This technique is already used to evolve the CH regions and is far more

e�cient than using the entire data set.

Second, Breiman attempts to optimize the partition's anchor point (X0) in

response to every change. Our early experiments indicated that this is an expensive

operation which has minimal impact on the end result. Consequently, only the vector

portion (~v) of each partition (see Equation 14) is modi�ed in this approach. Lastly,

while Breiman uses only the � parameter in his process, an additional threshold pa-

rameter (�) is used here to limit the absolute degradation in accuracy resulting from

a given change. This added feature gives the user more control over the simpli�cation

process.

The principle drawback of this method, however, is its extremely large time

complexity (refer to Table 11). As a result, using this technique for high dimension-

ality data sets is prohibitive. Another possible approach is to sort the terms in a

given paritition's unit vector in order of increasing size. Starting with the smallest
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% SYMBOLS:

� : Baseline error rate.

~vi : Vector normal to ith partition in set �
(�)+

max
: Maximum increase in error relative to �.

(�)+
min

: Minimum increase in error relative to �.
jmin : Term index corresponding to (�)+

min
.

� : Minimum allowable increase in error.

� : Minimum ratio of (�)+
min

to (�)+
max

.

% PSEUDO-CODE:
- Compute �.
i = 1;

while i � j�j do
- Initialize (�)+

min
and (�)+

max
for ~vi;

for j = 1 to d do
if (~vi(j) 6= 0) then

~vi(j) = 0;
- Compute (�)+

j
(for jth term).

- Update (�)+
min

and (�)+
max

based on (�)+
j
.

- Restore each term in ~vi to its baseline value.
end; %if;

end; %for;

if (((�)+
min

< �) and ((�)+
min

� �(�)+
max

)) then
% Update the baseline variables.
- Update � such that ~vi(jmin) = 0.

- Update �.
else

% Process the next partition.
i = i+ 1;

end; %if
end; %while;

return �;

Figure 38 Partition Simpli�cation Algorithm
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term, each term can be evaluated in terms of its contribution to the overall error

rate. Those terms found to have minimal (under a given threshold) or negative

contributions can then be eliminated. While the simplistic, single pass search is

computationally inexpensive, the tradeo� is that it will probably yield lower quality

partitions than the more extensive search currently implemented.

4.8 A Decision Rule Set Example - The Iris Data Set

An example of a decision rule set generated using the GRaCCE induction

process is now presented. For simplicity, Fisher's Iris data (34) was chosen as the

example data set due to its small size. The Iris data consists of four measurements

(features) describing three di�erent types of irises (Setosa, Versicolour and Virginica);

these features are: sepal length, sepal width, petal length and petal width. It was

determined through the feature selection process that the most salient features were

petal length and petal width; thus, the version of Iris input to GRaCCE contained

only this reduced feature set.

After processing the Iris data, GRaCCE produced a decision rule set consisting

of two partitions and three CH regions (one for each Iris class). The report containing

this information is similar in format to the example report in Appendix C. While

not reproduced here in its entirety, the portion of the report needed to construct the

decision rule set are given in Tables 9 and 10. Table 9 describes the partitions utilized

(as de�ned in Equation 15). Both the ~vN and X0 components of each partition are

speci�ed in terms of the two selection features (i.e., [petal length, petal width]). The

h(X) �eld speci�es the the resulting partition function.

The CH region descriptions are provided in Table 10. Since each CH region

corresponds to a decision rule, the partition mappings and orientation in this table

provide the information needed to construct each rule. The mappings are indexes

into the partition list; the indexed partitions are those which enclose the CH region.

As we saw in Table 9, each partition is a function which accepts a feature vector
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Table 9 Partition Speci�cation for Iris Data
p

Designator ~vN X0 hi(X)

h1 [0:000;�0:664] [2:392; 0:603] = �0:664(x4 � 0:603)

h2 [�0:677; 0:000] [4:789; 1:689] = �0:677(x3 � 4:789)

Table 10 CH Region to Partition Mapping for Iris Data
Class Size (in Members) Region Center h1 h2
Setosa 43 [1:467; 0:249] 1 {

Versicolour 39 [4:221; 1:318] �1 1

Virginica 37 [5:554; 2:024] { �1

(X) as input. In turn, the sign of the function's output determines which side of

the partition X is on. The orientation value serves to make the function's output

positive (when the two are multiplied together) for the CH region in question. Since

each partition in this problem is univariate, we can substitute a constant for each

partition and the symbols > and � for orientation values of �1 and 1, respectively.

The result is the decision rule set shown below and (graphically) in Figure 39.

if (petal width � 0:603 cm) then class = Setosa;

if ((petal width > 0:603 cm) and

(petal length � 4:789 cm)) then class = Versicolour;

if (petal length > 4:780 cm) then class = Virginica;

4.9 Adjunct Design Issues

This section addresses extensions to the baseline GRaCCE algorithm. These

are primarily intended to optimize the accuracy of the induced rule set.

4.9.1 Resolving Rule Con
icts. A minor disadvantage of the GRaCCE

algorithm is that it is possible to evolve CH regions that overlap with each other.

This overlap can occur both for regions of the same or di�erent class. Even setting
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Figure 39 This plot illustrates how the derived partitions are used to separate the

classes for the Iris data set.

the required purity (�min) to 100% does not guarantee a region set that is free of

overlap. This is because the boundary points used to approximate the data set

cannot fully represent its actual distribution; in truth, no subset of the data can

accomplish this. An example of an overlap condition is shown in Figure 40.

Whenever an instance is assigned to two or more regions of di�ering class,

additional logic is needed to resolve the con
ict. The approach implemented within

GRaCCE is to compile a list of all CH regions that contain the data instance in

question. Of these regions, the instance is subsequently assigned to the one with the

lowest impurity (with respect to the entire training set). Admittedly, this approach

to con
ict resolution is somewhat arbitrary; it was chosen because it appeared to

produce best results for the data sets tested. Other candidate options that were

evaluated include assigning data to the CH region with the largest coverage or to

the class with the greatest a priori probability (of those under consideration). There

is no guarantee that one of these methods will prove superior to the others for any

given data set.
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Figure 40 Relaxing the purity parameter (�min) makes it possible for CH regions
of di�erent class to overlap.

4.9.2 Classifying Orphan Data. When the generated rule set is the sole

basis for classi�cation, there may be feature vectors which are not assigned to any

class. This occurs because the CH regions found by GRaCCE do not always cover

the whole data space; as such, orphan data (falling outside these regions) are au-

tomatically misclassi�ed. It is possible, however, to reduce the error rate by using

criteria in addition to the decision rules to classify data.

A straightforward way to accomplish this is to assign orphan data to the closest

region. Such an approach is similar in nature to the way a Radial Basis Function

(RBF) classi�es data (10). The proximity of a given point to the ith region is

determined using the Mahalanobis distance metric (DM ) (29) computed as

DM (x;Ri) =

q
(x� �i)0�

�1
i
(x� �i) (20)
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Figure 41 Orphan data can be classi�ed by assigning it to the class of the closest
CH region in terms of Mahalanobis distance.

where the mean �i and covariance matrix �i are computed from the training data

assigned to the region. Unlike Euclidean distance, the Mahalanobis distance metric

accounts for the shape of the CH region in its computation, making it a more nat-

ural measure of proximity. For example, Figure 41 shows an orphan instance being

classi�ed based on its Mahalanobis distance from the center of each CH region. As

a result, it is assigned to class 2 due to the hyper-ellipsoidal shape of its CH region

even though it is closer (in terms of Euclidean distance) to the center of the class 1

region.

4.10 Toward a Concurrent Version of GRaCCE

Once an algorithm has been successfully implemented, the natural next step is

to determine if it can be organized as separate, concurrent tasks. Executing tasks in

parallel is attractive due to its potential for accelerating an algorithm's execution.

Concurrency is especially important to GRaCCE due to its relatively poor run-time

e�ciency (as compared to decision tree algorithms). This is due to a number of

factors, including its implementation in MatLab and the sequential nature of the

algorithm. In this section, the design of a concurrent version of GRaCCE (known
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as cGRaCCE) is discussed. The material presented here is augmented with an

analysis of the algorithm's time complexity Chapter V. In addition, the run-time

execution e�ciency and scalability of cGRaCCE (on both single and multi-processor

con�gurations) is tested in Chapter VI.

This version of cGRaCCE was designed as a proof of concept demonstration

rather than a full-scale implementation. The cGRaCCE system is hosted on the

AFIT Beowulf Cluster of personal computers (PCs) described in Appendix E. All

work on cGRaCCE was performed as part of Hammack's research (49). Due to

time constraints, the project was limited in scope to a single phase of the GRaCCE

algorithm. Consequently, the region identi�cation phase was selected as the basis

for cGRaCCE because, as shown in Table 11, it is GRaCCE's largest processing

bottleneck3. In order to port this code to the Beowulf cluster, it was necessary to

rewrite it in C++ (from MatLab script). In terms of the cGRaCCE parallelization

strategy, the following design options were considered:

1. Execute class-speci�c CH region searches in parallel. With respect to Figure 32,

this involves con�guring each iteration of the t loop as a separate task (see

Figure 42).

2. Run concurrent CH region searches for each boundary point.

3. Within a given CH region search, evaluate all solutions in the population in

parallel.

Of the above possibilities, the �rst option was selected as the basis for cGRaCCE.

As Figure 42 illustrates, this option is feasible because all the necessary inputs to

each search (such as the set of boundary points and partitions) are generated prior

to the start of the phase. In addition, no dependencies exist between searches for

each of the m classes. This is because each CH region search only impacts resources

3Although the partition simpli�cation phase has the largest growth rate, its execution is not
required.
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Table 11 Worst Case Time Complexity of GRaCCE Phases
Phase Status Complexity

Preprocessing - Feature Selection Optional O(nd2)

Preprocessing - Winnowing Mandatory O(dn2d)

Partition Generation Mandatory O(2(dn)2 + nd)

Data Set Approximation Mandatory O(n log(n))

Region Identi�cation Mandatory O(qn2d3=2)
Region Re�nement Mandatory O(dn log(n))

Partition Simpli�cation Optional O(d4n2 log(n))

related to its target class (such as boundary point assignments). As a result, the

region identi�cation phase for each class can be treated as a series of independent

tasks, each executed on its own processor. This approach has the potential of yield-

ing a factor of m speedup relative to the sequential version of GRaCCE. Both of

the remaining options would have generated far more tasks than available proces-

sors. In addition, the second option would have required additional post-processing

logic to select the minimal set of regions that cover all boundary points for each

class. Because this task is equivalent to the NP-complete Set Covering problem (4),

implementing it to would adversely increase the existing algorithm's time complex-

ity. Given these considerations, the �rst option was judged as most compatible with

both the Beowulf con�guration and the limited scope of this e�ort. A more detailed

description of the cGRaCCE design was provided by Hammack (49).

Since the current version of cGRaCCE only implements a single phase, ad-

dressing the remaining phases is a top priority for researchers using this system

in the future. Nonetheless, parallelizing the rest of the system should be fairly

straightforward. Perhaps the best candidates for parallelization are the preprocess-

ing (winnowing) and partition generation phases4. In both these cases, the tasks

that comprise each phase can be sub-divided into equal sized slices and assigned to

4This applies only to the generation of the initial set of boundary point pairs and their associated
partitions.

96



    All searches occur in parallel.
      Each search is based on a
                 different class.

CH Region Search 
          Class 1

Region Identification 
             Phase

CH Region Search 
          Class i

CH Region Search 
          Class m

Data Approximation 
           Phase

Region Refinement 
           Phase

Set of Boundary Points
Set of Partitions Set of Regions

Figure 42 Flowchart for cGRaCCE Tasks

separate processors for concurrent execution. In turn, the global set of data required

for each task is shared among all processors in the cluster. As Figure 43 illustrates,

the partition generation task can be divided among multiple processors if each pro-

cessor is assigned a slice of the boundary point pair set, while all processors share

the data set as a whole. Table 12 describes the division of labor scheme for each

candidate task.

Note that even with the above approach, it is still unnecessary (or impractical)

to parallelize some aspects of GRaCCE. For example, the data set approximation

phase is e�cient enough that making it concurrent would yield little bene�t. In ad-

dition, parallelizing the iterative partition generation algorithm (refer to Figure 29)

is impractical since it is essential that each boundary point be tested on an up-to-

date version of �. Similarly, designing a concurrent region re�nement or partition

simpli�cation phase is di�cult since a change to one region (or partition) may a�ect

the e�ectiveness of others in the set. This forces changes to R and � to be made in a
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Figure 43 Parallelization Scheme for Extending cGRaCCE

Table 12 Scheme for Parallelizing Candidate GRaCCE Tasks
Task Divide Share Generated Output

Winnowing Data Set Data Set Winnowed Data Set (WDS)

Boundary Point ID WDS WDS Boundary Point Pairs (BPP)

Partition Generation BPP WDS Partition Set

serial (rather than parallel) fashion. This is unfortunate as the partition simpli�ca-

tion phase has the worst time complexity. Given this, it may be prudent to explore

replacements for this functionality in the future.

4.11 Summary

This chapter has provided a comprehensive description of how GRaCCE con-

structs classi�cation rule sets. We conclude by summarizing those characteristics

that make GRaCCE fundamentally di�erent from other rule induction methods.

The �rst important distinction is the way class decision boundaries are derived. The
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point has repeatedly been made that GRaCCE �nds class partitions that approxi-

mate the natural decision surface, similar approaches are also used by methods such

as piecewise linear classi�ers (123). What makes the GRaCCE approach unique,

however, is that it �rst removes noisy instances from the training set which can ob-

scure the true decision boundary. In addition, the derived partitions approximate

the decision boundary both on a global (per class) and local (per boundary point

pair) basis. Lastly, GRaCCE uses an iterative partition generation technique to

insure that the partition set is su�cient to enclose each boundary point.

Because of the rigor of the above process, GRaCCE starts out with a large pool

of good building blocks for the construction of CH regions. The second distinction

is predicated on how the system uses this resource. Unlike decision tree methods,

which select a locally optimal partition to split each data subset, GRaCCE uses

evolutionary search to evolve a CH region from the partitions in its pool. This gives it

an advantage in that it can evaluate combinations of partitions, rather than just one

at a time. While other methods possess this capability (such as classi�er systems),

the key di�erence here is the types of partitions considered. Recall from Chapter II

that classi�er systems use partitions based on a single, discrete feature. As a result,

these partitions may not approximate the class decision boundaries found in \real-

world" data as successfully as those generated by GRaCCE. These points support

the argument that GRaCCE represents a unique and innovate rule induction method

that combines the best elements of other approaches. In subsequent chapters, the

theoretical and empirical support for this assertion are explored.
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V. Properties of GRaCCE

This chapter explores the properties of GRaCCE from a theoretical and algorithmic

perspective. With regard to the former, a number of theorems are proven which

show GRaCCE generates a set of partitions that approximate the natural class de-

cision boundaries. It is further demonstrated that these partitions are su�cient to

construct a complete set of decision rules to classify the data. The latter half of the

chapter focuses on deriving the time complexity of the GRaCCE algorithm (for both

its sequential and concurrent forms). Throughout the chapter, the mathematical

concepts that support the discussion are carefully developed.

5.1 Theoretical Foundations

This section provides a brief review of Bayesian decision theory as an intro-

duction to the data preparation methods employed by GRaCCE. Using references

to existing literature, it is proved (through a series of theorems) that these methods

lead to the generation of partitions that are piecewise approximations of the Bayes

optimal decision boundary. It is further proved that it is theoretically possible to �nd

combinations of these partitions that form class homogeneous regions that optimize

a given goodness criteria.

5.1.1 The Bayes Theorem and Related Concepts. Much of pattern recogni-

tion theory is built on a foundation of statistical mathematics; in turn, a large part

of the corresponding statistical theory is based on the work of Bayes. This section

examines the fundamentals of Bayesian decision theory.

The \centerpiece" of decision theory is the Bayes Theorem. Consider a problem

with m classes and a random variable x. Under these conditions, Bayes theorem

states that the a posteriori probability of class !i given x is given by
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p(!ijx) =
p(xj!i)P (!i)

p(x)
; i = 1::m (21)

where p(xj!i) is the conditional probability density function (PDF) of x given !i,

P (!i) is the a priori probability of class !i. The class independent PDF for x, p(x),

is de�ned by

p(x) =

mX
i=1

p(xj!i)P (!i) (22)

These statistics can be estimated from the training data for any pattern recog-

nition problem (29). As a result, it is possible to use these statistics to make a

decision regarding the class of x with a minimum of error. For a two class problem

this can be achieved using the Bayes decision rule. Let x be an observation vector

belonging to either !1 or !2. According to the Bayes decision rule, we can determine

the most likely class for x based on the criteria:

x 2 !1 if p(!1jx) > p(!2jx)

x 2 !2 if p(!2jx) > p(!1jx)

Thus, we select class !1 when p(!1jx) > p(!2jx). For a multi-class problem, we

can generalize this class selection method using Equation 23. Thus, the decision

boundary between two classes is reached when p(!1jx) = p(!2jx). The discriminant

function (h) that describes this decision boundary is de�ned by Equation 24.
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Select !k such that p(!k jx) = max
i

fp(!ijx)g (23)

h(x) = � ln(p(xj!1)) + ln(p(xj!2))
!1

>

<

!2

ln
P (!1)

P (!2)
(24)

If equal prior probabilities are assumed, the relationship between class distributions

and the decision boundaries are illustrated by example in Figures 44 and 45.

5.1.2 The Bayes Error. If we have complete knowledge of a given data set's

characteristics, it is possible to derive the minimumpossible error by integrating over

those regions where a given class distribution is in error. For a two class problem,

the conditional error (r) for any given x due to the Bayes decision rule is given by
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r(x) = minfp(xj!1)P (!1); p(xj!2P (!2)g (25)

Since the Bayes decision rule is optimal, r represents the minimum possible error at

x. Thus by taking the expected value of r (as in Equation 26), we can compute the

minimum error for the problem; this is known as the Bayes error(�B). In particular,

if Li is the region where the ith class has the highest posterior probability, to �nd

the Bayes error for the ith class, we must integrate over the region L6=i. Equation 27

computes the Bayes error for a multi-class problem.

�B = E[r(x)]

=
R
r(x)p(x)dx

= P (!1)
R
L2
p(xj!1)dx+ P (!2)

R
L1
p(xj!2)dx

(26)
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�B =

mX
i=1

1� P (!i)

Z
Li

p(xj!i)dx (27)

For a given data set, the Bayes error sets the fundamental limit on classi�ca-

tion performance (37). As a result, the Bayes error is an extremely important metric

to use in assessing the performance of a classi�er algorithm. From a practical stand-

point, however, computing the Bayes error is not always possible. In some cases, the

class likelihoods and priors are unknown; in others, these are known, but the result

is di�cult to compute numerically (141).

When such situations arise, the solution is to compute an estimate for the

bounds of the Bayes error. One of the most basic Bayes error estimates is the

Bhattacharyya distance (�) (37). By using

minfa; bg �
p
ab (28)

we can transform Equation 26 into

�B �
p
P (!1)

p
P (!2)

R +1
�1

p
p(xj!1)p(xj!2)dx

�
p
P (!1)

p
P (!2)exp(��)

(29)

which provides an upper limit on �B. The � term is de�ned by

� =
1

8
(�2 � �1)

0

�
�1 + �2

2

�
�1

(�2 � �1) +
1

2
ln

���1+�2
2

��p
j�1jj�2j

: (30)
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Using �, the bounds on �B from above and below can then be calculated with the

following equation:

1

2

�
1�

p
1� 4P (!1)P (!2)exp(�2�)

�
� �B � exp(��)

p
P (!1)P (!2): (31)

While it provides relatively tight bounds on the Bayes error, the Bhattacharyya

distance is much less accurate when the data does not conform to a Gaussian distri-

bution. As a result, non-parametric methods of estimating the Bayes error may be

preferable when little is known about the underlying distribution of the data.

5.1.3 Properties of the kNN Algorithm. The kNN algorithm (10) is one

of the most fundamental non-parametric methods for estimating the Bayes error.

Starting with Cover and Hart (20), a number of researchers have proved that as

the number of samples gets larger, the error probability for the kNN algorithm

asymptotically (*) bounds the Bayes error probability. In particular, when an in�nite

number of samples is available the conditional error given x is

r(x)� = 2p(!1jx)p(!2jx) (32)

Using Equation 25, it can be shown that this relation is equivalent to 2�B (37). Thus,

the error produced by the kNN algorithm is said to provide an upper bound of twice

the Bayes error. More precisely, Fukunaga (37) shows the following relationship

between the value of k and the kNN bound on the Bayes error:

1

2
��
B
� ��2NN

� ��4NN
� ::: � ��

B
� ::: � ��3NN

� ��1NN
� 2��

B
(33)
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While this bound is of theoretical importance, an upper bound of 2�B is still

a relatively imprecise error estimate. Further investigation by Devijver and Kit-

tler (27) revealed additional properties relating to the edited kNN procedure (refer

to Section 3.7). Given that r�
kNN

is the asymptotic error probability for the kNN

and r(x) is the Bayes optimal conditional error, they proved the following is true of

repeated kNN editing:

lim
j+

r�
kNN

= r(x) (34)

This means that as the number of edits (j) increases, the conditional error con-

verges to the Bayes optimal conditional error. Thus, the edited kNN procedure can

yield a tighter approximation of 2�B than the standard kNN algorithm. In addition,

Devijer and Kittler assert that the �nal edited data set contains a fraction (1-2�B)

of the number of samples before editing. As a result, the kNN editing procedure

leaves the remaining clusters densely populated and the decision boundaries fairly

well de�ned for reasonable problems (27). These important �ndings are central to

the theorems and proofs that follow in Section 5.2.

5.1.4 Relevant De�nitions. In addition to the de�nitions for boundary

points (De�nition 1) and boundary point pairs (De�nition 2) presented in Section 4.3,

the following de�nition is also relevant:

De�nition 6 - A contiguous sequence of linear partitions (H). Let H be a

sequence of n adjacent partitions separating two arbitrary classes (!1 and !2) over

an interval [a; b] such that:
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Figure 46 Piece-wise Sequence of Linear Partitions.

H(x) =

8>>>>>><
>>>>>>:

h1(x) for: a � x < x1;

h2(x) for: x1 � x < x2;

: : : : : :

hn(x) for: xn�1 � x < xn = b:

9>>>>>>=
>>>>>>;

when hi(xi) = hi+1(xi) for i = 1; : : : ; n� 1 and a < x1 < x2 < : : : < xn = b.

Given De�nition 6, Figure 46 illustrates how the interval over which each par-

tition is active shrinks as the number of partitions in the sequence increases. This

concept becomes signi�cant when Theorem 3 is discussed in the next section.

5.2 GRaCCE-Related Theorems and Discussion

In this section, three theorems related to the properties of GRaCCE are intro-

duced and proved. The practical implications of these theorems, with regard to rule

induction, are then discussed.
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5.2.1 Theorem Development.

Theorem 1 Assume: that each class has a continuous PDF. Given that the NN edit-

ing procedure converges to the Bayes optimal error (27), the Bayes decision boundary

must lie between a boundary point pair (b1; b2).

Proof.

1. Since each edited data set supports a Bayes optimal error condition, then:

p(b1j!1) > p(b1j!2) and p(b2j!1) < p(b2j!2).

2. Given that xD is a point on the Bayes decision surface, p(xDj!1) = p(xDj!2).

3. Let h(x) be de�ned as: h(x) = p(xj!1)�p(xj!2), then h(b1) > 0 and h(b2) < 0.

4. By Theorem 4.18 from Apostal (5, page 80), h(x) is continuous at h(xD).

5. By Bolozano (5, page 85), xD 2 (b1; b2). QED.

Given Theorem 1, it is desirable to compute a local approximation of the Bayes

decision boundary between b1 and b2.

Theorem 2 A hyper-plane tangent to the Bayes decision surface separating a bound-

ary point pair (b1,b2) can be constructed from the neighborhood (of like-class) sur-

rounding each boundary point.

Proof.

1. A hyper-plane is de�ned by a point in space (x) through which the it passes

and a vector normal to the hyper-plane (~vN).

2. Faux and Pratt (32) derived Equation 35 for computing ~vN normal to the

decision boundary at X0 (known as the anchor point). While this equation is

useful, Faux and Pratt did not present a method for computing X0.

3. Based on (32), Lee and Landgrebe (81) derived a rather complex method for

�nding X0.
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4. Both of the above methods assume a Gaussian distribution for the data of

each class with parameters derived using the maximum likelihood estimator

(MLE). Since the MLE is consistent (59), the parameter estimates converge to

their actual values (i.e., �̂i ! �i; �̂i ! �i) as the neighborhood around each

boundary point becomes increasingly dense.

5. As a result, the derived hyper-plane (h) becomes a local approximation to the

Bayes decision surface in the region between b1 and b2. QED.

~vN = rh(X)jX=X0
= (��11 � ��12 )X0 + (��12 �1 � ��11 �2) (35)

Theorem 3 The composite sequence of piecewise linear partitions separating classes

!1 and !2 (as de�ned in Theorem 2) converges to the Bayes decision surface as the

number of boundary point pairs increases.

Proof.

1. Let h be the Bayes decision surface; and H be the composite decision surface

as described by De�nition 6. Figure 47 depicts such a sequence.

2. Given the conditions in Theorem 2 and n!1, then by the Cauchy uniform

convergence theorem (5, page 220), jH(x)�h(x)j < �, 8x on the Bayes decision

surface for each �xed � > 0. QED1.

Theorem 4 Given that GRaCCE utilizes the algorithm described in Figure 29, then

su�cient partitions are generated to enclose every boundary point in a class homo-

geneous (CH) region.

Proof. Recall that the iterative partition generation algorithm presented in

Section 4.3 (see Figure 29) sequentially processes every instance (b) in the boundary

1Ruck (110) provides a similar proof that shows MLPs approximate the Bayes optimal discrim-
inant function.
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Figure 47 Combination of Local Partitions Approximate the Bayes Decision Sur-

face.

point list (�). Each b is tested to see if it can be enclosed in a CH region using the

current partition set (�). If this condition is not satis�ed, the necessary additional

partitions and boundary points are generated until it is enclosed. These items are

appended to their respective sets (�, �). The algorithm continues until all boundary

points in � have been processed. Therefore, by contradiction, it is impossible to

have a boundary point which does not have an associated CH region. QED.

5.2.2 Discussion. The relative goodness of the rules generated by GRaCCE

are predicated on the quality of the conditions upon which they are based. In this

case, the conditions for each rule correspond to speci�c inter-class partitions. The

purpose of the theorems presented here is to establish a formal basis for evaluating

these partitions. Since using the Bayes decision surface minimizes misclassi�cation

error, partitions that approximate it have inherent goodness and thus provide a solid

foundation for constructing decision rules.

The theorems prove that GRaCCE produces partitions that are piecewise ap-

proximations to the Bayes decision boundary (as illustrated by Figure 47). In par-
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ticular, Theorems 1 and 2 show that GRaCCE is able to derive local approximations

to the Bayes decision boundary for each boundary point pair. This proof is used

by Theorem 3 to show that the composite of the piecewise partition set converges

to the Bayes decision boundary separating two classes (see Figure 46 for a pictorial

representation of this process). Given a set of such partitions, the critical question

to ask is: can GRaCCE construct optimal CH regions given these partitions? Recall

from Section 4.5, a CH region is considered optimal if it minimizes the objective

function (�) for a given purity constraint (�min).

Since GRaCCE uses a genetic algorithm (GA) consistent with B�ack's de�ni-

tion (6, page 122), his GA convergence theorem (stated in Theorem 5) also applies.

The �rst condition of the convergence theorem is satis�ed when GRaCCE employs

an elitist reproduction strategy; the user may select this option by varying the Prob-

ability of Replacement parameter in the GA Menu (see Appendix B for details). The

second condition (reachability) is satis�ed as a result of Theorem 4, which shows that

su�cient partitions exist to form CH regions for each boundary point. Since the GA

employs both mutation and recombination, GRaCCE is capable of optimizing � with

a countably in�nite number of generations.

Theorem 5 - GA Convergence Theorem. Let a Genetic Algorithm (GA) ful�ll

the following conditions:

(1) The population sequence P(0), P(1), ... is monotone, i.e., 8t:

minf�(~a(t+ 1))j~a(t+ 1) 2 P (t+ 1)g

� minf�(~a(t))j~a(t+ 1) 2 P (t)g, and

(2) 8~a, the optimal solution ~a� 2 I is reachable from ~a by means of mutation and

recombination.

Then:

Pf lim
t!1

~a� 2 P (t)g = 1:
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Proof. Refer to B�ack's proof (6, page 129). QED.

5.3 Search Space Considerations

The induction of optimal decision trees is complicated by two factors. The

�rst is that it is an NP-complete problem (63); as a result, it is necessary to explore

all possible tree permutations to determine if an optimum has been achieved. The

second is the intractability of accomplishing such a search considering the sheer num-

ber of possibilities involved. Consider that given a data set containing n instances

of dimension d, there can be 2�
P

d

k=0

0
@ n � 1

k

1
A oblique splits if n > d (140); each

split is a hyper-plane that divides the search space into two non-overlapping parts.

It is important to remember that these are estimates of the size of the partition

pool; they do not represent the number of ways the partitions can be combined to

produce a decision tree. Equation 36 computes the total number of unique combi-

nations where k is the size of the partition pool and r is the number of partitions

used in the �nal tree. This yields an astronomical number of combinations even for

a relatively small problem.

C(k; r) =

0
@ k

r

1
A =

k!

(k � r)!r!
(36)

Due to the intractability of the problem, exhaustive search is rarely a viable

option for decision tree induction. As a consequence, most of these algorithms are

greedy in nature (11; 105; 94). While these strategies are e�ective in �nding locally

optimal solutions for each decision node, the results they produce are suboptimal in

terms of the �nal tree structure (45). In addition, the search for a partition is based

on minimizing some metric (such as impurity). As discussed earlier, these metrics
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make assumptions about the data landscape that may not be true. Thus, there is no

guarantee that these metrics yield partitions that approximate the Bayes decision

surface.

In contrast to these greedy strategies, GRaCCE preprocesses the search space

to identify a pool of partitions that approximates the Bayes decision surface between

boundary point pairs. While the size of the GRaCCE partition pool can theoretically

be C(n; 2), in practice it is much more tractable (k � n). For problems involving

two or more classes, the partition pool is even smaller since only those partitions

related to the target class are utilized in a search. Thus, compared to the decision

tree algorithms, the search space used by GRaCCE is smaller and it is populated

with higher quality building blocks.

Given the previous discussion, it is feasible to employ genetic search to locate

CH regions using the generated partition pool. Unlike the greedy algorithms used in

decision tree algorithms (94; 105; 111), GAs are capable of �nding CH regions that

maximize the criteria in �. This assertion is supported by researchers in combina-

torial optimization who observed that randomized search usually succeeds when the

search space holds an abundance of good solutions (48). Theorems 1 thru 4 show

that GRaCCE �ts this description by utilizing a pool of good partitions su�cient

for enclosing each boundary point in a CH region. While the No Free Lunch (NFL)

theorem (152) implies that no algorithm outperforms another under all conditions,

it is reasonable to expect that GRaCCE should routinely �nd solutions better (in

at least one of the optimization criteria) than those yielded by the oblique decision

tree algorithms.

For axis parallel splits, the number of potential partitions is a much lower, but

still signi�cant n�d (94). Since the search space is much smaller, �nding an optimal

solution using a deterministic search becomes a much more attractive alternative.

In addition, GA-based Classi�er Systems (41; 60; 127), have also been applied to

these problems. Given this, the desirability of employing GRaCCE would seem to
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fade. Recall from Section 2.2.2, however, that the smaller search space is due to

constraints on the form of the rule set. Thus, if these constraints do not match the

actual structure of the data (i.e., the classes cannot be separated well using axis-

parallel hyper-planes), the generated decision rule set can be more complex than

necessary.

5.4 Fitness Landscape Considerations

The concept of a �tness landscape (70) refers to the mapping from the genomes

of a population of individuals to their �tness, and a visualization of that mapping

(also refer to Appendix A). An analysis of the structure of �tness landscapes is of

both theoretical and practical interest in that the di�culty of the problem is closely

related to the ruggedness of the landscape's structure. Thus, a smooth �tness land-

scape tends to denote an easy problem while a rough landscape indicates a di�cult

one. Because landscapes for binary GA problems are di�cult to visualize, a number

of researchers have sought to characterize these landscapes by measuring how well

correlated they are (148). For example, in a smooth landscape, one would expect ge-

netically similar individuals (neighbors) to have similar levels of �tness; the converse

is true in a very rugged landscape. One technique used to assess landscape correla-

tion is the adaptive walk (72). This involves incrementally changing the genotype in

some manner that is expected to improve �tness, and measuring the degree to which

�tness changes; each distinct genotype change is called a step.

We use a variation of the adaptive walk technique to characterize the �tness

landscape of GRaCCE. In this case, the �tness for every adaptive step taken by a

greedy search algorithm is measured. This algorithm (described by the pseudocode

in Figure 33) searches for an initial CH region solution to initialize the GA population

with. The algorithm begins by using every partition to de�ne the CH region and

then tries to minimize the objective function (see Equation 18) by sequentially testing

the �tness contribution of each partition. Partitions that can be discarded without
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Figure 48 Results of Greedy, Adaptive Walk for the Wine Data Set.

worsening �tness are eliminated from the solution. The order of testing is determined

by distance to the focal (boundary) point of each search. The closer a partition is

to the focal point, the sooner it is tested. Thus each test of the greedy solution is

considered a step.

Figure 48 shows a slice of the landscape observed for one such (greedy) adaptive

walk for the Wine data set (refer to Table 15). As can be seen from the plot, �tness

starts out high and improves steadily until the 11th partition is eliminated. At

this point, the purity constraint in the objective function is violated and the �tness

worsens considerably. In short, this example implies that regions of the landscape

where solutions possess essential partitions (to enclose a given boundary point) have

a relatively smooth landscape, leading to a \valley" of near optimal solutions. On the

other side of the valley, \cli�s" arise when solutions shed these essential partitions.

Thus, the purpose of the greedy algorithm is to �nd solutions near this valley so that

the GA can commence a more focused local search. While each data set is di�erent,

the Wine data set has classes that can be characterized by unimodal, Gaussian

distributions. Intuitively, we would expect the �tness landscapes of data sets with

similar characteristics to behave likewise.
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5.5 Time Complexity Analysis

This section derives the GRaCCE algorithm's run-time execution growth rate.

Such an estimate provides a theoretical basis for comparing the system's run-time

e�ciency with those of other rule induction methods. Due to its importance in

the algorithm, the Region Identi�cation (RI) phase (discussed in Section 4.5) is the

exclusive focus of this analysis. Compared to the other phases, the time complexity

of the RI phase is most heavily dependent on the speci�c structure of the data set

being processed. Accordingly, we begin by constructing a model of the data set

based on some fundamental assumptions about its structure. Using this model, a

complexity estimate is derived for the RI phase. Next, this model is updated for the

concurrent version of the algorithm proposed in Section 4.10. Lastly, the derived

complexities are compared to those of decision tree algorithms.

5.5.1 Data-Related Assumptions. The time complexity of the GRaCCE

algorithm is closely linked to the structural characteristics of the data set being pro-

cessed. In particular, it is most dependent on the number of partitions and boundary

points generated from a given data set. The more boundary points (and correspond-

ing partitions), the greater the processing load during the region identi�cation phase.

While the speci�cs of this relationship will be explained in Section 5.5.2, the data

set attributes that a�ect these factors are discussed here.

Given a particular data set with n training instances, nbp boundary points are

yielded by the GRaCCE algorithm. In a typical data set, nbp � n. Although there

is no set formula for determining this relationship, the actual number of boundary

points is in
uenced by the following data set characteristics:

� Number of training instances.

� Number of classes in the training data.

� Number of modes per class and their relative position.
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Table 13 Complexity Metrics for Example Data Sets.
Figure Distribution n m Modes j�j j�j

49 Gaussian 1000 2 2 4 4

50 Uniform 1000 2 2 9 7

51 Gaussian 1000 2 20 14 10

53 Gaussian 1000 2 25 105 66

52 Gaussian 1000 5 25 63 49

� The type of data distribution (i.e., Gaussian, uniform, etc).

The extent to which these factors a�ect partition generation is re
ected by

the cases described in Table 13 and shown in Figures 49 through 52. Despite the

fact that all cases have the same amount of data, note that there is a substantial

di�erence in the number of generated partitions. In Figure 49 (the simplest case),

only a few partitions are generated due to the unimodal/Gaussian nature of the data

set. In contrast, the uniform distribution of data in Figure 50 causes many more

boundary point pairs (and corresponding partitions) to be produced. A comparison

of Figures 51 and 53 reveals how a shift in the spatial orientation of modes can a�ect

the number of partitions generated. Lastly, Figure 52 demonstrates that increasing

the number of classes does not automatically translate into more partitions. The

moral of the story is that you cannot judge the structural complexity of a data set

by its size alone.

This variation raises the question: is there an easy way to estimate a data

set's complexity based on its size (n)? If one is interested in a precise estimate,

then the answer to this question is clearly no. As the previous cases illustrated, the

di�culty in prediction is caused by the way one characteristic can o�set another.

In addition, every data set has a unique distribution which any randomly selected

subset of the data should conform to. This situation makes it necessary to create

a general purpose model to describe the data. Once such a model is de�ned, more

reliable estimates of the algorithm's complexity can be obtained. Since GRaCCE
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Figure 49 Two Class Unimodal - Gaussian Distribution.
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Figure 50 Two Class Unimodal - Uniform Distribution.
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Figure 51 Two Class Multimodal - Symmetric.
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Figure 52 Five Class Multimodal - Interleaved.
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Figure 53 Two Class Multimodal - Checkerboard.
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is speci�cally engineered to handle highly multi-modal data sets, we create a data

model for our analysis based on the following assumptions:

� Each mode is its own class (in the context of this discussion, class and mode

are synonymous).

� Each mode has a Gaussian distribution.

� All modes have the same number of instances.

� The number of instances per class increases exponentially with the data set's

dimensionality.

Given these assumptions, our data model has two parameters: number of classes

(m) and dimensionality (d); therefore, this model is denoted as 
(m;d).

The next step in the analysis is to estimate the worst case number of gener-

ated partitions (j�j) given our data model. This is a critical step since the number

of boundary points is closely related to the number of partitions. Recall GRaCCE

generates two types of partitions: global and local. While m(m � 1)=2 global par-

titions are generated (one for each pair of classes), estimating the number of local

partitions is a far more di�cult task.

To develop this estimate, it is helpful to represent the problem as a graph of

dimension d where each mode is treated as a distinct vertex. In this representation,

each edge corresponds to a boundary point pair consistent with De�nition 2. Note

that this de�nition precludes the use of a fully connected graph which would result

in C(m; 2) edges. Thus, we must construct the graph such that each new vertex adds

the maximum number of edges to the graph without causing existing edges to be

invalidated. Within these constraints, the maximum number of edges is d provided

that all edges are of equal length (ensuring that each vertex is equidistant to all its

neighbors). Figure 54 illustrates such a case for two dimensions. The upper limit on

the maximum number of edges in such a graph is given by
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Adding an additional mode generates
two extra edges.

Figure 54 Data set con�guration for worst case complexity.

Edges � dm � b
�
m� 1

d+ 1

�
+ d(m� d) (37)

when m > d + 1. Since each edge is a potential class partition, then j�j grows at a

worst case rate of

O� = dm+
m(m� 1)

2
(38)

when both the global and local partitions are accounted for. It is further assumed

that the partition and boundary point sets grow at approximately the same rate

because each partition has an associated boundary point pair.

5.5.2 Derivation of Sequential Time Complexity. The time complexity

for the sequential version of the RI phase can now be estimated using the previous

assumptions. The necessary calculations in this section are based on Figures 55

and 56 which contain meta-level versions of the RI phase and objective function, re-

spectively. While not a detailed representation, this pseudocode includes the generic

operations that directly impact the algorithm's overall complexity. The analysis

starts with the GA in the Figure 55 pseudocode and proceeds outward to yield the

desired estimate.
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for t = 1 to m do % For each class

while (unassigned(�t) 6= ;) do % For each unassigned boundary point

b = max(weights(unassigned(�t)));
[I ] = Organize GA Template(t; b;�);
[~z] = Greedy Search(I );

~x = ga(t; b;�,I ); % Run the Genetic Algorithm
�t = assign(�t; ~x)
end; %while

end; %for t

Figure 55 Simpli�ed Pseudo-code for the Region Identi�cation Phase

function [�tness] = objfun(~ai) % Evaluate the ith individual, ~ai
�(:).valid = true; % Assume all boundary points are members
for j = 1 to l do % For each enabled partition

if (~ai(j) > 0) then

h = fo(j)� fm(j);
for k = 1 to j�j do % For each boundary point

if (�(k).valid) then % Is the boundary point still assigned?

if (h(�(k)) < 0) then % Is the boundary point in the region?

�(k).valid = false; % If not, eliminate from consideration
end; %if

end; %if

end; %for k

end; %if
end; %for j

return �(t;~ai;�); % Base �tness on remaining members

Figure 56 Simpli�ed Pseudocode for the Objective Function
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As a starting point of reference for this discussion, Appendix A provides a

detailed discussion of GAs, including a derivation of their complexity. Speci�cally,

Gordon (46) derived the complexity of a binary GA as

OGA = (q � p �max(l;�; n)) (39)

where q is the number of generations, p is the size of the GA population, l is the

length of the GA chromosome and � is the objective function. Thus, to determine

the complexity of the GA, the complexity of the objective function must �rst be

derived. In the GA employed by GRaCCE, the objective function evaluates the CH

region de�ned by each individual in the population. As discussed in Section 4.5,

each candidate region is represented using a binary chromosome, where each bit

corresponds to a di�erent partition. Because only those partitions associated with

the target class are used in a given search, the length of the chromosome can vary

between 1 and j�j; in general: 1 � l � (j�j=(m � 1)). For simplicity, however, it is

assumed that the maximum workload is modeled by l = j�j=m with all partitions

enabled.

The objective function in the Figure 56 pseudocode computes �tness for one

individual at a time. Starting with the �rst gene, all boundary points are tested to

determine if they are members of the region de�ned by the chromosome. Once a

boundary point fails for a given gene, it is removed from consideration when testing

subsequent genes in the same chromosome. As a result, the pool of boundary point

candidates should quickly converge to a small subset of �. Despite this, each point

must still be checked for validity every time. Therefore, the number of operations

required to evaluate a given chromosome (O�) can be approximated by
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O� = l � nbp (40)

This initial estimate of O� can be simpli�ed in a number of ways. Both l and nbp are

related to the size of �. Since j�j grows at the rate speci�ed in Equation 38, each

class can be expected to have d+m associated partitions, so l � d+m. In turn, nbp

can be approximated as m(d+m). This simpli�es Equation 40 to

O� = m(d+m)2 (41)

Inserting this result into Equation 39 we obtain,

OGA = (q � p �m(d+m)2) (42)

For a binary GA, Goldberg (41) recommends a population of size
p
l in order to

ensure that all allele values are represented for each gene2. Alternatively, research

by Reeves (107) and Scha�er (112) show that small, constant populations su�ce for

binary string representations as string length increases. To be conservative, however,

we utilize Goldberg's more pessimistic sizing estimate, which yields a population size

of
p
d +m. Substituting this relation for p, the complexity estimate for the GA then

becomes

2In his analysis, Goldberg assumes that only the crossover operator is used for reproduction -
mutation is avoided. Of course, if mutation is used, then any schema is reachable.
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OGA = (q �m(d+m)5=2) (43)

With Equation 43, we can compute the complexity of the RI phase. Since each

class consists of a single mode, it is assumed that all boundary points for the target

class are assigned in the �rst iteration of the main loop. Within the main loop of

the pseudocode in Figure 55, the GA dominates the other operations. As a result,

the complexity of the phase can be estimated as

ORIP = (q �m2(d +m)5=2);where l � d+m (44)

given a data set modeled by 
(m;d). This result is interesting because it implies (for

the average case) that time complexity is independent of data set size (at least for the

RI phase). From an analytical standpoint, nbp is maximized for a given data set when

every training point is a boundary point (i.e., m = nbp = n). While mining such a

data set may prove impractical, it does result in a worst case complexity estimate.

On the positive side, such an assumption makes other simpli�cations possible (such

as l � d). Given this, the worst case time complexity for the RI phase is

ORIP = (q � n2d3=2)where l � d (45)

While the complexity estimate in Equation 45 is polynomial with respect to

data set size and dimensionality, it is important to remember that for the vast

majority of data sets, the number of classes is much smaller than the number of
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instances (m� n). It is also signi�cant to note that the time complexity of the RI

phase should decrease if the number of classes is less than the number of modes.

5.5.3 Comparison to Decision Tree Algorithms. With regard to complexity,

it has been shown that decision tree induction (DTI) algorithms that use axis-parallel

splits, such as ID3 and C4.5 (105), have a worst case growth rate of O(nd2) (144). In

addition, Murthy's OC1 algorithm (94) (which uses oblique splits) has a worst case

complexity of O(dn2log(n)). While GRaCCE's worst case growth rate of O(qn2d5=2)

is much worse than C4.5, it is roughly competitive with OC1. Recall from Sec-

tion 4.10, the RI phase can potentially achieve a linear (factor of m) improvement

in time e�ciency when executed in a distributed environment.

From a practical standpoint, however, the true complexity of each of these

methods is driven more by the \internal" complexity of the data than it is by the

raw size of the data set. Indeed, from an algorithmic perspective, it is intuitive that a

more complex data set takes longer to process than a simpler one. Additionally, the

data related assumptions outlined in Section 5.5.1 support the assertion that a data

set's complexity can be independent of its size. This hypothesis is further bolstered

by test results on the scalability of GRaCCE which are presented in Section 6.7.2.

Given these factors, the worst case time complexity estimates may not be a realistic

basis for comparing the e�ciency of these algorithms.

Another factor that must be considered is the quality of the rule sets produced

by each method. It has been demonstrated that GRaCCE generates partitions which

re
ect the natural structure of the data. In contrast, the DTI algorithms use \one

size �ts all" partitioning metrics which may not work as desired for a given data

set. Considering the complexity discussion, a fundamental question to ask is: how

e�ective are the rules produced by DTI algorithms? From a classi�cation accuracy

standpoint, the decision rules produced by DTI algorithms have \reasonable" ac-

curacy while being inexpensive to compute (130). However, while desirable, these
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characteristics do not guarantee that the rules are meaningful to the end user. As

discussed in Section 3.7, over-�tting can result in very accurate rules that unneces-

sarily fragment the data space; this can lead to a situation where the forest cannot

be seen for the trees. Since data mining applications often put a premium on mean-

ingful decision rules, these must re
ect the natural structure of the data. Given

this, the superior e�ciency of DTI algorithms may be a misleading indicator of their

e�ectiveness in the data mining domain.

5.5.4 Derivation of Concurrent Growth Rate. In Section 4.10, an archi-

tecture for a concurrent version of GRaCCE (cGRaCCE) is proposed. The distin-

guishing characteristic of the architecture is that it executes the CH searches for

each class in parallel. This approach is feasible because all the necessary inputs to

each search (such as the set of boundary points and partitions) are generated prior

to the start of the phase. In addition, no dependencies exist between searches for

each of the m classes. This is because each CH region search only impacts resources

related to its target class (such as boundary point assignments). As a result, the

region identi�cation phase for each class can be treated as a series of independent

tasks, each executed on its own processor. Thus, the execution time of the RI phase

can potentially be reduced by a factor of m (given m processors), yielding a growth

rate of

OcRIP = (q �m(d+m)3=2) (46)

In the next chapter, the run-time execution speedup resulting from this architecture

is measured for a number of data sets. It is important to note that several studies (1;

132; 154) have demonstrated that distributed DTI algorithms achieve near linear

speedup as the number of CPUs is increased due to the use of techniques to balance

processing load among the processors.
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5.6 Summary

This chapter developed the theoretical foundation for the GRaCCE data min-

ing algorithm. While a broad range of topics were discussed, the unifying theme is

that, unlike other rule induction algorithms, this system evolves rules based on the

natural structure of the data. This assertion is supported by theorems which prove

the GRaCCE algorithm has the following properties:

� It winnows the training data (by applying the edited kNN procedure) to a

subset whose boundary point pairs straddle the Bayes decision surface.

� GRaCCE can utilize the neighborhood around each boundary point (in a given

pair) to generate a complete set of partitions which approximate the Bayes

decision surface in a piecewise fashion.

� Selected partitions can be combined to locate CH regions within the data. It

is further shown that GRaCCE is capable of �nding optimal CH regions as

de�ned by a objective function given su�cient time.

In addition, the �tness landscape for the RI phase was analyzed for a repre-

sentative data set. The purpose here was to provide some additional justi�cation

for our use of GAs to perform a hard local search for a CH region, given an initial

solution. The last part of the chapter focused on deriving the time complexity of

GRaCCE's RI phase. The motivation behind this exercise is to show that the ex-

ecution e�ciency of the CH region search is primarily in
uenced by characteristics

which re
ect the structural complexity of the data (such as classes/modes and di-

mensionality). These results show that the average case time complexity for the RI

phase is independent of the size of the data set. Although a worst case complexity

was also derived, the fact that this re
ects an unrealistic case makes it di�cult to

compare the system's e�ciency to those of decision tree algorithms.
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VI. Experiments with GRaCCE

The preceding chapters explained the algorithmic and theoretical underpinnings be-

hind GRaCCE. The value of any system, however, ultimately depends on how it

performs in practice; accordingly, the focus of this chapter is testing. The system's

relative utility is evaluated by comparing its performance to that of several decision

tree algorithms on a suite of benchmark data sets. The metrics of interest are the

accuracy and complexity of the induced decision rule set. In addition, the system's

robustness is tested with respect to its user-tunable parameters. Lastly, a concurrent

version of GRaCCE is demonstrated.

6.1 Objectives

When evaluating any system, the test objectives should ensure that the system

satis�es its original design goals. With this in mind, Table 14 provides a mapping

between GRaCCE's design goals and the objectives of the tests needed to verify

them. These objectives are the basis for the tests described later in the chapter.

The one glaring omission from this list of objectives is a direct comparison of the

run time execution performance of GRaCCE to the other rule induction algorithms.

This testing is not accomplished here because GRaCCE is written in MatLab. Since

MatLab code executes much slower than compiled C++ code, such a test would

only serve to verify the obvious. Before a meaningful comparison can be done, the

software must be completely translated to C++.

6.2 Selection of Data Sets

In order to properly validate GRaCCE's credentials as a general purpose data

mining algorithm, it is essential to determine how it performs on a wide variety of

data sets. To attain this level of diversity, the data set selected for testing must vary

in terms of the following characteristics:
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Table 14 Mapping of Design Goal to Test Objectives
Design Goal Test Objective

Be a general purpose rule induction

method.

Show that GRaCCE successfully pro-

cesses a variety of di�erent data sets.

Generate decision rule sets that are

compact and simple.

Measure size and complexity of the gen-

erated rule set relative to competing

methods.

Achieve comparable classi�cation accu-
racy with other rule induction methods.

Compare the classi�cation accuracy of
the generated rule set relative to com-

peting methods.

Be robust with respect to user de�ned

parameters.

Demonstrate that GRaCCE's perfor-

mance does not signi�cantly change in
response to incremental changes to user

speci�ed parameters.

The GRaCCE architecture can be par-
allelized.

Demonstrate a concurrency version of
the system. Evaluate its run-time exe-

cution performance in both single and

multi-processor con�gurations as data
set size and complexity are varied.

� Number of classes

� Dimensionality

� Number of modes per class (i.e, unimodal versus multi-modal data)

� Size of data set (in terms of number of instances)

� Attribute type (discrete, continuous, mixed)

It is also important to evaluate GRaCCE using both synthetic and real data. The

synthetic data discussed earlier served mainly to exercise the system's capabilities

for speci�c scenarios. In contrast to the clean-room like perfection of synthetic data,

\real-world" data sets often contain signi�cant levels of noise, anomalies, and missing

data. Consequently, testing on such data gives a much clearer picture of a system's

expected performance.

With these considerations in mind, the ten real-world data sets selected for

testing are described Table 15. With the exception of FLIR, each of these data sets
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Table 15 Real Wold Data Set Descriptions
Name Classes Samples Features Types of Features

(Original)

Iris 3 150 4 Continuous

Cancer 2 699 9 Continuous

Wine 3 178 13 Continuous

Glass 6 214 9 Continuous

Diabetes 2 768 8 Continuous

FLIR 2 1000 6 Continuous

Mushroom 2 8124 22 Discrete

Thyroid 2 3163 25 Mixed

Ionosphere 2 351 34 Continuous

Soybean 19 307 35 Discrete

are frequently cited benchmarks available from the University of California (UC) -

Irvine Machine Learning Repository. The FLIR data was generated by Ernisse (30)

as part of a project to develop an image based Automatic Target Recognition (ATR)

system for SCUD missile launchers. These data sets augment the synthetic ones

introduced in Chapter III. While it is always possible to evaluate the system with

additional data, the sets selected are diverse with respect to the previously outlined

characteristics. Other data sets from the Irvine repository (such as Voter and Credit)

were considered and rejected because they contributed little to the breadth of the

test suite.

6.3 Data Preparation

Proper preparation of the target data set is a critical part of any data mining

operation. For these experiments, preparation consists of feature selection and re-

placement of missing data. With regard to the former activity, recall that reduction

of a data set's dimensionality is the best way to �ght the curse of dimensionality (8).

To accomplish this, each of the data sets was run through the GRaCCE feature se-

lection procedure (described in Section 4.2.1). This process returned those features

which proved to be the best class discriminators for the kNN algorithm. Table 16
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Table 16 Reduced Data Set Descriptions

Name Features Selections

(Reduced)

Iris 2 3, 4

Cancer 6 1, 5, 6, 7, 8, 9

Wine 3 7, 9, 10

Glass 4 3, 4, 6, 8

Diabetes 5 2, 4, 6, 7, 8

FLIR 2 4, 6

Mushroom 4 5, 20, 21, 22

Thyroid 2 15, 23

Ionosphere 14 2, 4, 7, 12, 13, 15, 16, 18, 19, 25, 26, 32, 34

Soybean 15 2, 3, 4, 5, 8, 14, 15, 20, 22, 27, 28, 29, 31, 32, 35

contains the reduced feature list for each data set. Note that this procedure was not

performed on the synthetic data sets since they already have a minimal function set.

Of those listed in Table 15, only the Mushroom, Soybean and Thyroid data sets

had instances with missing attributes. While several techniques for repairing missing

data were discussed in Section 3.8, the most sophisticated of these were rejected due

to their extreme complexity and unsuitability for data mining applications. Instead,

the data sets were repaired using a kNN based imputation method. This method

�lls in each missing attribute based on the k closest instances (of the same class)

which possess that attribute. To compensate for instances missing multiple features,

the total distance between two feature vectors is computed as the average of the

di�erence between all attributes which are not missing. While this approach could

produce poor results for sparse data, the data sets utilized here did not have this

characteristic.

Once the k closest instances are selected, the missing value is computed. For

real-valued attributes, the missing value is assigned the average of that attribute for

the k nearest instances. For discrete attributes, the missing value is assigned to the

majority value of the k nearest instances. Although �lling in each missing attribute
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with a �xed value introduces some bias, this step is necessary in order to generate

a single, unambiguous set of decision rules. In addition, the level of bias is equal

for each algorithm tested. As a result, this approach is acceptable for purposes of

algorithm comparison.

6.4 Reporting of Results

Since the backbone of any test regimen is the supporting documentation, this

section explains how the results for each run are recorded. During the course of

each GRaCCE run, the results are written to a report �le. This report contains the

following information:

� Data �le information, including class speci�c tallies for the training and test

sets.

� Algorithm parameter settings.

� Feature selection status.

� Error rate tallies (for training, evaluation, and test sets).

� Description of �nal partition set, including the average decrease in partition

dimensionality resulting from the partition simpli�cation phase.

� Description of CH regions (clusters).

� A mapping of CH regions to the partitions that de�ne them.

An example report �le is located in Appendix C. Because the GRaCCE al-

gorithm has distinct phases, the classi�cation error rate is reported at the end of

each phase where a viable rule set exists; this corresponds to the last three phases.

Every report �le contains several labeled error rates, each corresponding to the part

of the data set (train, eval or test) being evaluated and the particular test method.

An explanation of these terms is provided in Tables 17 and 18 for the data set and

method categories, respectively.
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Table 17 Classi�cation Error Rate Descriptions
Category Classi�cation Error Computed On:

Train Portion of training data that remains after winnowing is com-

plete.

Eval Entire set of training data.

Test Entire set of test data.

Table 18 Test Method Descriptions
Test Method Description

Method 1 Based on partitions derived from Region Identi�cation Phase.

Method 2 Based on partition set resulting from the Region Re�nement

Phase.

Method 3 Re
ects the use of Mahalanobis distance to augment either par-
titions set used in Method 1 or Method 2. The selected partition
set is the one that results in the lowest error rate.

Method 4 Based on partition set resulting from the Partition Simpli�cation
Phase.

Method 5 Re
ects the use of Mahalanobis distance to augment the parti-
tion set used in Method 4.

6.5 Inter-Algorithm Comparison

The purpose of this section is to evaluate the performance of GRaCCE against

that of other rule induction algorithms. Such a comparison provides the reader with

a perspective of how the system's performance relates to techniques which represent

the current state-of-practice in this domain.

6.5.1 Test Methodology. With regard to the test objectives stated in Ta-

ble 14, the �rst three are assigned to this section. In order to gauge the relative utility

of GRaCCE in terms of these objectives, performance is measured with respect to

the following criteria:

� Classi�cation Accuracy

� Generalization

� Decision Rule Set Complexity
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The degree of classi�cation accuracy for each algorithm (reported in terms of the

error rate) is determined by the accuracy of its generated rule set. Generalization is

the absolute di�erence between the training and test set error rates. The complexity

of the decision rule set generated by each algorithm is characterized by four separate

metrics: the average number of rules, conditions per rule, terms per rule set and

compactness1.

Each test case is performed on two versions of each data set, containing the

full and reduced feature sets (see Table 16). The results are tabulated on the basis of

four, �ve fold cross-validations (for a total of twenty runs per data set version). Prior

to each cross-validation sequence, the data set being tested is randomly shu�ed. The

data is then divided up into �ve equal sized folds. For each run, four folds compose

the training set and the �fth is used for testing. Over the course of the cross-

validation sequence, each fold is rotated into the test set. All classi�cation accuracy

results are based on performance against the test data set.

6.5.2 GRaCCE Speci�c Considerations. As discussed in Section 6.4, each

GRaCCE report includes the error rates speci�ed in Table 18. Given this, it is

essential to establish guidelines for using the information in the report �le to tabulate

results that support the test objectives discussed above. Since the comparisons

performed in this section are between generated rule sets, the metric computations

exclude Methods 3 and 5, which go beyond the information provided in each rule

set. For the classi�cation accuracy and generalization computations, the lowest of

the error rates given by Methods 1, 2 and 4 are chosen. Depending on which error

rate is chosen, there can be a substantial di�erence in rule set complexity since the

least complex rule set does not necessarily have the lowest error rate. The rule

set size and complexity metrics are derived, in turn, from the rule set of the test

method used in the classi�cation accuracy computation. These decisions are made

1A more in-depth description of these metrics is provided in Section 6.5.7
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independently on a per run basis. Thus, the results for GRaCCE reported in this

section can be characterized as the composite for Methods 1, 2 and 4 with error rate

determining the selected method.

6.5.3 Choices for System Comparison. In our evaluation, GRaCCE's per-

formance is compared to that of several decision tree algorithms. As discussed earlier,

decision tree induction has proven to be a quick and reliable method of generating

high quality classi�cation rules. Since both types of algorithms produce rules as

output, a comparison between them is far more meaningful than if GRaCCE were

evaluated against a black box type of classi�er (such as a neural network). In addi-

tion, the decision tree software packages were readily available, both at AFIT and

on the Internet.

The particular systems chosen were C4.5, CART and OC1; a comprehensive

description of these algorithms was presented in Chapter II. Because each of these

algorithms uses a di�erent approach to decision tree induction, testing against all

three provides a balanced picture of GRaCCE's relative performance. The C4.5 al-

gorithm searches for partitions that are orthogonal to the feature axis. Because of

this constraint, C4.5 tends to produce rule sets that are large, but easily understood.

In contrast, CART searches for oblique partitions composed of linear combinations

of features. As a result, we expect CART to produce smaller rule sets with more

complex antecedents than C4.5. The version of CART used in these tests is imple-

mented as part of the LNKnet pattern recognition test-bed (82). Lastly, the OC1

algorithm (like CART) also searches for oblique partitions. The key di�erence be-

tween the two, however, is that OC1 uses limited random search while the CART

method is entirely deterministic.

6.5.4 Algorithm Parameters. This section describes the parameters used in

by each algorithm in the experiments. In some cases, the same parameters (nominally
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Table 19 GA Parameter Settings
Parameter Name Value

Population Size 100

Probability - Crossover 70.0%

Probability - Mutation 10.0%

Probability - Replacement 90.0%

Convergence Window Size (q) 10 generations

Recombination Function 2 Point Crossover

Selection Function Stochastic Universal Sampling (SUS)

the defaults) were employed for all experiments. In other cases, it was necessary to

modify the parameters for each data set in order to achieve optimal performance.

6.5.4.1 GRaCCE Speci�c Parameters. The parameters used by the

GRaCCE algorithm can be grouped into two basic categories: Genetic Algorithm

and Region Identi�cation (RI) phase. The GA parameter set is used to initialize and

control the genetic search of each CH region. In these experiments, these parameters

(summarized in Table 19) were held constant for all test cases. For reference, Ap-

pendix A contains a comprehensive explanation of how these parameters a�ect the

GA. Table 20 lists the settings (by data set) for the most critical parameters from

the RI phase. The speci�c role played by each of these parameters are discussed in

Chapter IV and Appendix B.

6.5.4.2 C4.5 Parameters. When running C4.5, the default parameter

settings were utilized. The parameter of most importance is the con�dence level used

for pruning the decision tree; this parameter is set to 25%. It is also important to

note that the windowing option was not enabled; as a result, only a single tree was

constructed for each run.

6.5.4.3 CART Parameters. The version of CART utilized for these

experiments o�ers few user-selection settings. Of those available, however, both

axis-parallel and oblique types of splits are enabled for consideration. In addition,
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Table 20 GRaCEE - Region Identi�cation Phase Parameter Settings
Data Set Parameter

Partition Set Type � 
t � �
Diabetes Global 0.80 1.0 0.5 0.2

Wine Mixed 0.80 1.0 0.5 0.2

Cancer Mixed 0.80 1.0 0.5 0.2

FLIR Mixed 0.95 0.8 0.5 0.2

Iris Mixed 0.80 1.0 0.5 0.2

Glass Mixed 0.80 1.0 0.5 0.2

Mushroom Mixed 0.80 1.0 0.5 0.2

Thyroid Mixed 0.80 1.0 0.5 0.2

Ionosphere Mixed 0.90 1.0 0.5 0.2

Soybean Mixed 0.80 1.0 0.5 0.2

Table 21 CART Parameter Settings
Data Set Stop if � N patterns

Diabetes 25

Wine 25

Cancer 50

FLIR 50

Iris 25

Glass 10

Mushroom 25

Thyroid 50

Ionosphere 10

Soybean 5

expansion of the tree at a given node is halted if there is zero node error or if there are

less than N patterns assigned to the current node. During testing, it was found that

exercising this option resulted in smaller trees with better classi�cation accuracy.

The settings utilized for N , which produced the best results for each data set (in

terms of classi�cation accuracy) are shown in Table 21.

6.5.4.4 OC1 Parameters. The parameters de�ned within the OC1

algorithm are those that control the random search at each node for better hyper-

planes. In particular, the parameters and corresponding default settings are summa-
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Table 22 OC1 Parameter Settings
Parameter Description Value

Number of restarts for initial hyper-plane selection 20

Order of coe�cient perturbation Sequential

Number of random perturbations tried at each local min-

imum

5

rized in Table 22. Note that our experiments utilized only these default settings. A

more detailed explanation of how these parameters control algorithm execution can

be found in Section 2.2.5.1.

6.5.5 Classi�cation Accuracy. The error rates of the decision rule sets

generated by each method for the full and reduced feature sets are summarized in

Figures 57 and 58, respectively2. These results show that out of 40 comparisons,

GRaCCE was signi�cantly more accurate 11 times and was outperformed 8 times

for the full feature set; the corresponding numbers for the reduced feature set ex-

periments were 10 and 8, respectively. While the system performed slightly better

than its competition for both types of feature sets, it does not appear to consis-

tently outperform any of the methods surveyed. It is important to note, however,

that GRaCCE did worst on those data sets containing discrete features (refer to

Table 15); this trend is especially evident when the algorithm is compared to C4.5

and OC1. This �nding indicates that the system may have to be modi�ed to better

accommodate discrete data sets.

6.5.6 Generalization. In Section 3.7 the problem of classi�er over-�tting

was discussed. Recall that over-�tting occurs when the decision rule set re
ects

the training examples, but little else. This condition frequently results in excellent

accuracy on the training data set and poor accuracy on the test set. It can therefore

2The superscript codes indicate which methods a given result is statistically superior to. This
determination is made on the basis of a di�erence of means test (129) at a 0.05 level of signi�cance.
The code for each method is as follows: GRaCCE (1), CART (2), C4.5 (3), and OC1(4). These
codes are also used for Figures 67 and 68.
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Error Rate (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 22:8 � 2:52;3;4 27:7 � 4:0 28:1 � 2:5 27:6 � 3:0

Wine 6:0 � 3:44 6:6� 3:6 6:5� 4:8 11:3 � 6:1
Cancer 4:2� 1:72;3 5:8� 1:9 5:3� 1:5 4:9� 1:4

FLIR 25:6 � 2:7 24:1� 2:11 24:3 � 2:8 23:5 � 2:71

Iris 2:9� 3:52;3 5:5� 3:6 5:3� 3:2 3:7� 3:0

Glass 36:4 � 6:2 35:7 � 5:7 33:9 � 6:8 37:0 � 5:8

Mushroom 8:5 � 3:32 14:8 � 10:4 0:0� 0:01 0:6 � 0:81

Thyroid 2:4 � 0:9 1:4� 0:71 1:0� 0:31 1:7 � 0:51

Ionosphere 10:5 � 2:9 12:3 � 3:0 10:1 � 3:3 13:2 � 5:2

Soybean 10:7� 2:82;4 40:4 � 15:6 6:7� 1:81 13:5 � 4:1

            

Figure 57 Baseline Comparison - Classi�cation Accuracy for Full Feature Set

(Rules Only)
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Error Rate (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 22:8� 2:22;3;4 25:9 � 3:6 28:3 � 3:4 27:6 � 3:8

Wine 7:1 � 3:42;4 12:1 � 5:3 8:8 � 4:2 15:7� 12:4
Cancer 4:5� 2:0 4:9 � 1:7 5:4 � 2:0 5:1� 1:9

FLIR 23:6 � 3:53;4 25:3 � 3:0 26:5 � 1:4 25:8 � 2:4

Iris 3:0� 2:6 4:5 � 3:6 4:3 � 2:5 7:0� 9:3

Glass 34:1 � 4:72 38:4 � 4:6 32:3 � 5:1 34:6 � 8:7

Mushroom 2:8 � 2:12 6:3 � 2:2 0:0 � 0:01 0:1 � 0:11

Thyroid 2:3� 1:0 0:8 � 0:21 1:1 � 0:41 1:2 � 0:61

Ionosphere 13:0 � 6:1 11:0 � 3:7 9:1 � 3:01 11:1 � 3:4

Soybean 15:7 � 5:32 43:7 � 13:2 9:4 � 2:61 12:1 � 3:41

            

Figure 58 Baseline Comparison - Classi�cation Accuracy for Reduced Feature Set

(Rules Only)
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be concluded that the degree of over-�tting is inversely proportional to how well an

algorithm generalizes. Generalization, in turn, can be measured by taking the mean

of the absolute di�erence in error rate between the training and test set; the smaller

the di�erence, the better the algorithm generalizes.

Over-�tting may appear attractive to anyone whose goal is to optimize classi-

�cation accuracy, because it achieves a very low training error rate. Since training

data is 80% of the total, the overall error rate may be lower for those techniques

which generalize poorly relative to those that generalize well. While this is a seduc-

tive argument, it has two major 
aws. The �rst is that accuracy is almost universally

judged based on the test case results. Second, solutions that over-�t the data tend

to be more complex as compared to those with better generalization (51). This rule

of thumb is consistent with the principle of Occam's razor (10), which tells us to

always choose the simplest model that �ts the data.

Accordingly, a comparison of the generalization performance for the GRaCCE,

CART and C4.5 algorithms is shown in Figures 59 and 603. These results show that

GRaCCE generalizes better than CART for all data sets and better than C4.5 for all

but two data sets (Mushroom and Thyroid). Given the above discussion, we should

expect the GRaCCE generated decision rule set to be less complex than those of

CART and C4.5. The actual �ndings on this point are discussed in the next section.

6.5.7 Decision Rule Set Complexity. In this section, we quantitatively

analyze the complexity of the rule sets that yield the previously reported results.

From a data mining standpoint, complexity metrics are important because they

relate the ease with which the rule set can be interpreted; in short, the simpler the

rule set, the easier it should be to understand. In addition, simpler rule sets tend

to be more meaningful than complex ones for equivalent levels of accuracy. This is

because individual rules have greater coverage of the data when they are fewer in

3Note that results for OC1 are not included because its reports do not contain training data
error.
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� Error Rate (� � �)
Data Set Method

GRaCCE CART C4.5

Diabetes 2:7 � 1:7 27:3 � 4:1 21:1� 3:7

Wine 3:6 � 2:9 6:5 � 3:5 5:5� 4:5

Cancer 1:7 � 1:5 5:3 � 1:9 3:3� 1:8
FLIR 2:4 � 1:9 23:4 � 2:1 17:3� 2:9

Iris 2:7 � 2:6 5:4 � 3:6 3:8� 3:0

Glass 6:9 � 3:3 35:3 � 5:7 26:7� 7:1

Mushroom 0:6 � 0:5 6:7 � 3:8 0:0� 0:0

Thyroid 0:8 � 0:8 1:4 � 0:7 0:4� 0:4

Ionosphere 2:8 � 2:3 11:8 � 3:0 8:1� 3:6

Soybean 2:7 � 2:3 25:3 � 8:6 3:8� 1:8

            

Figure 59 Baseline Comparison - Generalization Performance on Original Feature

Set
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� Error Rate (� � �)
Data Set Method

GRaCCE CART C4.5

Diabetes 2:1 � 1:5 24:4 � 4:1 19:5� 3:6

Wine 3:4 � 2:5 10:6 � 5:5 5:9� 4:3

Cancer 1:9 � 1:3 4:3 � 1:7 2:9� 2:1
FLIR 3:6 � 2:1 24:5 � 2:9 12:9� 2:1

Iris 2:6 � 1:9 4:5 � 3:5 2:9� 2:0

Glass 5:3 � 3:2 34:9 � 5:0 16:7� 5:5

Mushroom 0:3 � 0:3 3:7 � 1:0 0:0� 0:0

Thyroid 0:5 � 0:4 0:8 � 0:2 0:3� 0:4

Ionosphere 3:8 � 3:0 11:0 � 3:8 6:8� 3:0

Soybean 3:3 � 2:6 27:9 � 5:6 3:3� 2:3

            

Figure 60 Baseline Comparison - Generalization Performance on Reduced Feature

Set
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Table 23 Description of Rule Set Metrics

Metric (�) Description

Number of Rules For GRaCCE, this equates to the number of CH regions.

For the decision tree algorithms, this corresponds to the

number of leaves on the tree.

Conditions per Rule For GRaCCE, this metric represents the number of par-

titions per CH region.

Compactness This metric provides an estimate of complexity that is
independent of partition type (i.e., univariate or oblique).

It is computed by multiplying the number of rules in each

decision rule set by the average number of conditions per

rule.

Terms per Rule Set This is the sum of the number of terms used in each con-
dition over all rules in a given set. Algorithms which use
oblique partitions (i.e., GRaCCE, CART, and OC1) can

have up to d terms per condition. For those using uni-
variate partition (i.e., C4.5), each condition has a single

term. Thus, unlike compactness, this complexity metric

penalizes algorithms for using oblique partitions.

number. To this end, the four metrics collected for each data set are described in

Table 23; each measures a di�erent, yet important, aspect of rule set size.

The corresponding measurements of each metric (for both the original and

reduced feature sets) are shown in Figures 61 through 68. If these results are viewed

in terms of compactness (refer to Figures 67 and 68), then GRaCCE clearly yields

less complex decision rule sets; for almost every case, it generated rule sets that were

much smaller than those of its competition. In several instances, GRaCCE found

solutions that had less than half of the rules output by C4.5 or CART. These results

are consistent with our earlier published �ndings (89). It must be noted, however,

that while the rule sets produced by GRaCCE were statistically more compact than

those of OC1, in absolute terms the di�erence was often marginal. As indicated in

Table 20, GRaCCE typically used a mixed set of partitions (i.e., both global and

local) to isolate CH regions. The notable exception to this is the Diabetes data set; in

this case, the global partitions provided the superior solution (a rare phenomenon).
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The di�erence in rule set size can be attributed to the way GRaCCE generates

and evaluates decision boundaries. Recall from Chapter V that GRaCCE partitions

approximate the Bayes optimal (natural) decision boundaries. In addition, the al-

gorithm searches for the best CH regions (in terms of accuracy and coverage) using

combinations. As a result, GRaCCE can form CH regions that better re
ect the

natural clustering structure of the data. Contrast this with decision trees, which

tend to partition data based on statistical metrics computed for a given data subset.

While e�ective, these splitting criteria often ignore the natural boundaries within

the data. Also, because partitions are added one at a time, the synergistic e�ect of

partition combinations is ignored. This often results in the construction of rule sets

that are more complex than necessary.

For many data sets, however, the natural class boundaries can only be approxi-

mated using oblique partitions (each of which can have up to d terms). As Figures 65

and 66 show, using these types of partitions adds more terms to each rule set; this

makes it harder to interpret each condition. When viewed from this perspective,

the complexity results are decidedly more mixed. For the original feature set, C4.5

outperforms GRaCCE for half the data sets; this �gure falls to 20% for the reduced

feature set, however. Even so, GRaCCE's performance is impressive considering the

built in advantage C4.5 enjoys in this area (its conditions only have a single term).

It is important to keep in mind, however, that C4.5 also generates the most decision

rules per data set. As a result, the complexity is merely shifted from one metric to

another.

Another apparent trend is the large variance in the compactness metric for the

decision tree algorithms. Speci�cally, it appears that the complexity of the rule set

is heavily dependent on the fold of the data withheld from training during the cross-

validation process. These �ndings indicate that these techniques are fragile in terms

of their ability to generate compact rule sets. In contrast, the GRaCCE generated

results are more consistent across runs. This phenomenon is especially apparent in
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data sets such as FLIR, Glass and Soybean. As discussed in Section 3.7, similar

results have been reported by other researchers (108). For instance, Kohavi (75)

suggests using up to 90% of data for training decision trees to achieve more consistent

results. This is a major shortcoming because very large data sets are typically

processed by sampling a small fraction of the available instances; mining is then

performed on this subset (125). Given this, it is desirable to employ techniques which

deliver consistent results when provided with an arbitrarily random data subset.

6.5.8 Viewing the \Big Picture". Thus far the algorithm comparison has

been conducted by reviewing each metric in isolation. To characterize overall perfor-

mance, however, it is essential to analyze metrics in combination. This goal is met by

Figures 69 and 70, which compare the normalized accuracy and compactness metrics

for each data set across all algorithms. These �gures show a signi�cant number of

GRaCCE symbols clustered in the lower left hand corner of each graph; this indicates

that the system consistently induces compact rule sets with better than average ac-

curacy. Of its competitors, only the OC1 algorithm's performance is comparable to

GRaCCE. These results indicate that the decision rule sets produced by GRaCCE

tend to have better coverage and fewer conditions while achieving comparable accu-

racy with the decision tree algorithms. Because the rules found by GRaCCE have

better coverage, they can be considered more meaningful than those of C4.5 (even

if they are somewhat harder to interpret).

6.6 Intra-Algorithm Comparison

In this section, the various modes of the GRaCCE algorithm are compared;

emphasis is placed on the relative tradeo� in performance associated with each.

6.6.1 E�ect of Classifying Orphan Data. When the generated rule set is

the sole basis for classi�cation, there is no guarantee a given feature vector will be

assigned to any class. This occurs because the CH regions found by GRaCCE do
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Number of Rules (� � �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 2:0� 0:0 27:9� 1:9 55:2� 8:0 7:7� 6:7

Wine 3:3� 0:6 4:9� 0:9 5:3� 0:9 4:3� 1:9

Cancer 2:0� 0:0 5:4� 0:9 10:8� 3:0 2:6� 1:0
FLIR 7:8� 5:4 22:4� 1:6 65:3 � 10:2 15:8� 24:1

Iris 3:0� 0:0 4:4� 0:5 4:3� 0:5 3:1� 0:2

Glass 7:4� 0:8 18:6� 1:4 23:6� 7:6 10:1 � 6:4

Mushroom 8:3� 1:9 6:1� 3:7 15:4� 1:8 8:4� 2:4

Thyroid 2:8� 1:0 11:2� 2:2 7:0� 3:2 5:6� 4:5

Ionosphere 2:3� 0:6 8:3� 2:9 10:8� 2:4 3:6� 2:3

Soybean 20:8� 0:9 22:8 � 11:6 31:6� 3:0 24:3 � 5:9

            

Figure 61 Baseline Comparison - Average Rule Set Size for the Original Feature

Set
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Number of Rules (� � �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 2:0� 0:0 17:1� 1:1 53:8 � 7:7 5:4� 7:4

Wine 4:3� 0:6 4:5� 0:5 6:3� 1:4 3:3� 1:6

Cancer 2:6� 0:7 5:4� 0:8 9:9� 2:1 4:7� 5:0
FLIR 7:7� 3:2 23:0� 2:1 49:8 � 11:1 18:0 � 24:7

Iris 3:0� 0:0 4:9� 0:4 4:6� 0:9 3:4� 1:6

Glass 5:9� 1:0 9:1� 0:9 17:7 � 3:5 10:0� 4:9

Mushroom 6:0� 0:9 7:2� 2:4 33:0 � 0:0 11:4� 1:0

Thyroid 3:4� 2:0 10:7� 1:5 6:0� 3:2 6:5� 3:1

Ionosphere 5:0� 2:6 8:3� 1:4 11:6 � 3:3 4:9� 3:3

Soybean 22:9 � 3:9 16:2� 7:7 35:1 � 2:2 20:4� 2:7

            

Figure 62 Baseline Comparison - Average Rule Set Size for the Reduced Feature

Set
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Conditions per Rule (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 1:0� 0:0 4:8� 0:1 5:8� 0:2 2:5 � 1:1

Wine 1:6� 0:3 2:3� 0:3 2:4� 0:2 2:0 � 0:6

Cancer 1:3� 0:4 2:4� 0:2 3:4� 0:4 1:3 � 0:4
FLIR 2:0� 0:8 4:5� 0:1 6:0� 0:2 2:9 � 1:7

Iris 1:4� 0:1 2:1� 0:2 2:1� 0:2 1:6 � 0:1

Glass 2:0� 0:2 4:2� 0:1 4:5� 0:4 3:1 � 0:9

Mushroom 2:4� 0:5 2:3� 1:0 3:9� 0:2 3:0 � 0:5

Thyroid 1:4� 0:5 3:5� 0:3 2:6� 0:7 2:1 � 1:0

Ionosphere 1:2� 0:3 2:9� 0:6 3:4� 0:3 1:6 � 0:8

Soybean 3:1� 0:2 3:8� 1:5 5:0� 0:1 4:6 � 0:3

            

Figure 63 Baseline Comparison - Average Conditions per Rule for the Original

Feature Set
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Conditions per Rule (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 1:2� 0:5 4:1� 0:1 5:7� 0:2 1:9 � 1:0

Wine 2:0� 0:5 2:1� 0:2 2:6� 0:3 1:6 � 0:5

Cancer 1:1� 0:2 2:4� 0:2 3:3� 0:3 1:8 � 1:0
FLIR 2:3� 0:6 4:5� 0:1 5:6� 0:3 3:1 � 1:7

Iris 1:3� 0:0 2:3� 0:1 2:2� 0:3 1:6 � 0:6

Glass 2:2� 0:3 3:2� 0:1 4:1� 0:3 3:2 � 0:7

Mushroom 2:2� 0:5 2:7� 0:6 2:6� 0:0 3:5 � 0:1

Thyroid 1:4� 0:3 3:4� 0:2 2:4� 0:8 2:5 � 0:7

Ionosphere 1:7� 0:6 3:0� 0:2 3:5� 0:4 2:0 � 0:9

Soybean 3:1� 0:7 3:8� 0:8 5:1� 0:1 4:3 � 0:2

            

Figure 64 Baseline Comparison - Average Conditions per Rule for the Reduced

Feature Set
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Terms per Rule Set (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 15:4 � 2:7 1042:8 � 93:0 320:2 � 58:1 208:5 � 259:6

Wine 50:4 � 33:3 144:9 � 44:0 12:7� 3:3 124:3 � 94:2
Cancer 18:6 � 8:9 85:6� 21:5 37:6 � 14:4 33:0 � 29:3

FLIR 88:0 � 94:2 597:7 � 59:4 394:4 � 75:5 473:9 � 967:3

Iris 11:7 � 4:7 36:2 � 6:8 9:1� 1:7 19:7 � 2:9

Glass 40:7 � 39:0 608:5 � 64:4 108:8 � 48:0 324:7 � 291:8

Mushroom 106:9 � 186:5 163:8 � 151:1 60:6� 9:7 573:1 � 234:9

Thyroid 51:4 � 50:3 226:2 � 59:6 20:5 � 13:6 395:4 � 500:6
Ionosphere 76:5 � 57:5 619:7 � 41:0 37:2 � 11:7 251:1 � 277:1

Soybean 958:0 � 1056:6 1305:7 � 848:8 157:3 � 18:9 3947:7 � 69:2

Figure 65 Baseline Comparison - Average Terms per Rule Set (Original Feature
Set)

Terms per Rule Set (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 9:4� 1:6 344:5 � 27:9 309:7 � 54:4 84:6� 197:5

Wine 18:9� 8:4 68:9 � 16:8 32:8 � 9:8 77:1� 138:6

Cancer 15:0� 7:3 85:6 � 21:5 37:6 � 14:4 33:0 � 29:3

FLIR 31:4 � 19:5 202:4 � 24:7 282:5 � 78:4 185:0 � 318:7

Iris 6:3� 1:9 20:3� 2:4 10:2 � 3:3 12:6 � 11:0
Glass 26:1 � 19:7 89:4 � 11:4 73:8 � 19:7 139:1 � 98:2

Mushroom 25:5 � 24:7 54:8 � 27:7 87:0 � 0:0 159:4 � 20:4

Thyroid 5:7� 3:1 72:0 � 14:0 16:7 � 12:9 36:8 � 26:2

Ionosphere 93:3 � 77:4 294:7 � 8:7 41:7 � 16:4 174:3 � 180:6

Soybean 657:5 � 527:9 427:9 � 247:5 180:3 � 14:4 1334:8 � 16:9

Figure 66 Baseline Comparison - Average Terms per Rule Set (Reduced Feature

Set)
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Rule Set Compactness (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 2:0� 0:02;3;4 133:8 � 11:9 320:2 � 58:1 84:6 � 32:4

Wine 5:5� 1:62;3;4 11:2 � 3:4 12:6 � 3:3 9:6� 7:2
Cancer 2:6� 0:92;3 13:0 � 3:4 37:6 � 14:4 3:7� 3:3

FLIR 19:3 � 16:32;3 100:6 � 9:7 394:4 � 75:5 79:0 � 161:2

Iris 4:0� 0:22;3;4 9:3� 1:8 9:1 � 1:7 4:9� 0:7

Glass 15:1 � 2:52;3;4 78:2 � 7:9 108:8 � 48:0 38:1 � 32:4

Mushroom 20:5 � 7:93 17:2 � 15:8 60:2 � 9:7 26:1 � 10:7

Thyroid 4:1� 2:62;3;4 39:1 � 11:0 20:5 � 13:6 15:8 � 20:0
Ionosphere 2:7� 1:42;3;4 25:9 � 12:4 37:2 � 11:7 7:4� 8:2

Soybean 64:3 � 3:42;3;4 106:7 � 70:4 157:3 � 18:9 112:8 � 35:9

            

Figure 67 Baseline Comparison - Average Rule Set Compactness (Original Feature

Set)
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Rule Set Compactness (�� �)
Data Set Method

GRaCCE CART C4.5 OC1

Diabetes 2:0� 0:02;3 69:8 � 5:8 309:7 � 54:4 16:9 � 39:5

Wine 8:4 � 2:53 9:6� 1:8 16:7 � 5:6 6:1� 6:0
Cancer 3:0� 1:22;3 13:0 � 3:1 32:8 � 9:8 12:9 � 23:1

FLIR 19:5 � 10:62;3 104:1 � 12:7 282:5 � 78:4 92:5 � 159:4

Iris 4:0� 0:02;3 11:1 � 1:3 10:2 � 3:3 6:3� 5:5

Glass 12:8 � 2:92;3;4 29:0 � 3:9 73:8 � 19:7 34:8 � 24:6

Mushroom 13:3 � 4:52;3;4 20:9 � 10:3 87:0 � 0:0 39:8 � 5:1

Thyroid 5:1� 2:32;3;4 36:7 � 7:2 16:7 � 12:9 18:4 � 13:1
Ionosphere 9:9� 7:22;3 25:5 � 6:4 41:7 � 16:4 12:5 � 12:9

Soybean 74:6 � 28:13;4 67:3 � 43:1 180:3 � 14:4 89:0 � 16:1

            

Figure 68 Baseline Comparison - Average Rule Set Compactness (Reduced Fea-

ture Set)
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Figure 69 Normalized Comparison - Original Feature Set
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Figure 70 Normalized Comparison - Reduced Feature Set

155



not always cover the whole data space; as such, orphan data (falling outside these

regions) are automatically misclassi�ed. As discussed in Section 4.9.2, it is possible

to assign orphan data to the closest region. Region proximity is determined using

the Mahalanobis distance metric (see Equation 20).

Figure 71 shows the degree to which this procedure improves the classi�cation

accuracy of each data set. For the most part, the reduction in error rate is incre-

mental, falling in the 0 � 2% range. Although small, these improvements can be a

signi�cant proportion of the total error rate. Note that in cases where the decision

rules covered the entire data space (such as Diabetes) no improvement occurred.

6.6.2 E�ect of Partition Simpli�cation. As stated earlier, the results pre-

sented in the inter-algorithm comparison are labeled composite because they include

a mix of original and simpli�ed rule sets; neither of these categories has a monopoly

on the best results. This is because the partition simpli�cation algorithm (PSA)

sometimes results in an increased classi�cation error rate. This assertion is sup-

ported by Figures 72 and 74, which show that the error rate increases as a result of

the PSA in 75% of the cases examined. The di�erence in error is due to two main

factors. The �rst is the settings of the PSA parameters (� and �); more liberal

settings allow for greater di�erences in accuracy between the original and simpli�ed

rule sets. In addition, the use of an approximation of the data set (i.e., the weighted

boundary points), in lieu of the entire training set, means that the error estimate is

looser than it otherwise would have been. In light of these considerations, however,

it important to note that in most instances, the decrease in accuracy is small (un-

der 3%). Given this, and keeping in mind the computational expense of the PSA,

the decision to invoke this functionality should be based on the value placed on a

simpli�ed rule set by the user.

6.6.3 Robustness. Robustness refers to the extent to which a system's

performance is dependent on its input parameters. If a small change to an input
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Error Rate (�� �)
Data Set Feature Set

FULL REDUCED

Diabetes 22:8� 2:5 22:8� 2:2

Wine 4:5� 2:7 7:1� 3:4
Cancer 3:7� 1:6 4:5� 2:0

FLIR 24:2� 2:8 22:8� 3:6

Iris 2:8� 2:6 3:0� 2:6

Glass 35:4� 6:3 32:5� 5:8

Mushroom 6:5� 2:6 2:1� 1:7

Thyroid 1:9� 0:7 1:9� 0:9

Ionosphere 9:4� 2:3 12:5� 6:8
Soybean 9:0� 2:1 14:4� 5:3

            

Figure 71 This graph shows the mean error rate reduction (relative to the rules-

only results) when orphan data is classi�ed using the Mahalanobis dis-
tance metric.
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Error Rate (�� �)
Data Set Original Simpli�ed �

Diabetes 22:8� 2:5 26:2 � 3:7 +3:4

Wine 6:6� 3:4 10:2 � 5:0 +3:6

Cancer 4:4� 1:7 5:2 � 1:9 +0:8

FLIR 26:2� 2:9 27:3 � 2:4 +1:1

Iris 3:2� 4:1 5:1 � 4:0 +1:9

Glass 42:4� 9:4 37:3 � 7:0 �5:1
Mushroom 13:4� 5:4 8:6 � 3:3 �4:8
Thyroid 2:8� 1:4 10:2 � 22:9 +7:4

Ionosphere 11:3� 2:8 13:3 � 4:6 +2:0

Soybean 12:4� 3:4 12:4 � 4:5 +0:0

Figure 72 Error Rate Changes Resulting from Partition Simpli�cation (Original

Feature Set).

Terms per Rule Set (�� �)
Data Set Original Simpli�ed DPS

Diabetes 16:0 � 0:0 6:1� 4:5 0:62� 0:28

Wine 70:9 � 20:4 15:4 � 10:1 0:77� 0:20

Cancer 23:4 � 7:9 10:6 � 4:0 0:54� 0:15

FLIR 115:7 � 98:0 36:7 � 29:4 0:63� 0:17

Iris 16:2 � 0:9 7:6� 1:6 0:53� 0:12
Glass 135:9 � 22:4 24:2 � 5:9 0:82� 0:03

Mushroom 449:9 � 172:8 40:3 � 18:6 0:91� 0:02

Thyroid 103:1 � 64:9 14:7 � 13:6 0:81� 0:28

Ionosphere 91:2 � 46:9 25:5 � 11:2 0:68� 0:19

Soybean 2251:6 � 120:0 119:3 � 13:4 0:95� 0:01

Figure 73 Reduction in Rule Set Complexity resulting from Partition Simpli�ca-
tion (Original Feature Set).
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Error Rate (�� �)
Data Set Original Simpli�ed �

Diabetes 22:8� 2:2 26:7 � 3:4 +3:9

Wine 8:1� 3:4 8:8 � 4:8 +0:7

Cancer 4:6� 1:9 6:4 � 2:2 +1:8

FLIR 24:3� 3:3 24:0 � 3:6 +0:3

Iris 3:0� 2:6 5:5 � 3:5 +2:5

Glass 40:4� 6:8 36:1 � 6:2 �4:3
Mushroom 4:2� 2:9 4:1 � 4:0 �0:1
Thyroid 3:0� 1:8 2:3 � 1:0 �0:7
Ionosphere 14:1� 6:8 15:9 � 6:1 +1:8

Soybean 16:4� 5:1 19:3 � 7:2 +2:9

Figure 74 Error Rate Changes Resulting from Partition Simpli�cation (Reduced

Feature Set).

Terms per Rule Set (�� �)
Data Set Original Simpli�ed DPS

Diabetes 10:0 � 0:0 5:4� 2:2 0:46� 0:22

Wine 25:3 � 7:4 13:6 � 5:9 0:47� 0:11

Cancer 18:0 � 7:3 7:3� 4:0 0:60� 0:12

FLIR 39:0 � 21:3 26:9 � 13:3 0:29� 0:14

Iris 8:0� 0:0 4:3� 0:7 0:46� 0:09
Glass 51:2 � 11:5 16:6 � 5:3 0:68� 0:06

Mushroom 53:4 � 18:2 15:8 � 6:5 0:71� 0:04

Thyroid 10:2 � 4:5 5:7� 3:1 0:45� 0:09

Ionosphere 138:8 � 100:5 29:4 � 22:2 0:76� 0:10

Soybean 1119:0 � 421:4 112:6 � 36:4 0:90� 0:01

Figure 75 Reduction in Rule Set Complexity resulting from Partition Simpli�ca-
tion (Reduced Feature Set).
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parameter causes a large di�erence in performance, the system is considered brittle

with respect to that parameter. Of course, it is preferable to use systems that ex-

hibit incremental di�erences in performance in response to like changes in parameter

values. Given this, it is of interest to analyze GRaCCE's performance in this respect.

Because its fundamental task is to �nd class homogeneous regions in data,

GRaCCE's robustness is predicated on its ability to cluster data. While there is

no shortage of clustering algorithms, many are heavily dependent on user provided

input parameters4. Speci�cally, an algorithm tends to produce optimal results if the

user knows the required information ahead of time; conversely, the results can be

very poor if the user guesses wrong. This lack of robustness of such algorithms is

a problem as the user rarely has enough insight about the structure of the data to

provide the best set of parameters. According to Jain and Dubes (65), there is no

single best criteria for judging a cluster because no precise and workable de�nition

of \cluster" exists. For the purpose of this test, however, cluster quality is estimated

with respect to two metrics: classi�cation accuracy and the number of clusters.

These metrics are based on the premise that a good clustering algorithm should

maximize classi�cation accuracy with the fewest possible clusters.

Based on the above discussion, robustness is determined by measuring how

sensitive GRaCCE's performance is (in terms of the metrics discussed above) to

changes in the cluster purity parameter (
min). This parameter is chosen as the

basis for this experiment because it has the most in
uence on how solutions are

evaluated by the objective function (�), refer to Equations 16 thru 18). In order

to evaluate performance changes, the 
min levels were varied from 0.7 to 1.0. These

values represent the most reasonable levels of cluster purity that a user might specify.

In short, 
min re
ects the user's preference rather than his guess about the clustering

structure. The data sets evaluated for this exercise are: Iris, Cancer, Wine, Glass,

and Syn04. The Syn04 data set was selected due to its larger number of modes (25).

4A comparison of GRaCCE to other clustering techniques can be found in (90).
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This experiment revealed GRaCCE to be more robust than expected. The

results for each data set are shown in Figures 76 through 80. While the results di�er

for each data set tested, only one trend is evident: as the required level of purity de-

creases, the number of clusters generated also decreases. This e�ect was anticipated

as requiring high levels of purity will naturally cause cluster fragmentation. While

this was anticipated, the real surprise was the absence of a corresponding degrada-

tion in classi�cation accuracy. It was expected that allowing greater impurity would

result in a much higher error rate. Although this did occur for the SYN04 data set,

for the other data sets the error rate was relatively constant or even decreased.

One explanation for these unexpected results is that the objective function

favors regions containing large clusters (of the target class) bounded by a minimum

of partitions, as long as these meet the 
min purity threshold. By decreasing 
min, we

increase the �tness of larger, but less pure, clusters; thus, it is more likely to retain

such solutions in the population. While this strategy may degrade accuracy in the

short term, it also a�ords the opportunity to evolve variations of these clusters that

are more �t with respect to purity.

This e�ect may not extend to highly multi-modal data sets. The lower modal-

ity of most data sets gave them a propensity to retain the natural cluster structure.

When a data set has a large number of modes per class (as SYN04 does), the nat-

ural cluster structure is harder to retain as purity drops. Eventually, a point is

reached where relaxing the purity requirement has a disastrous e�ect on accuracy.

For SYN04, this level was 
min = 0:8; for data sets with fewer modes, the threshold

is probably lower. Thus, the purity level selected should be based on the number of

modes per class.

6.7 Assessing cGRaCCE

The last test objective is to demonstrate cGRaCCE, which implements a con-

current version of the RI phase (88). Since cGRaCCE only implements a single phase
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Figure 76 E�ect of 
min on Cancer Data
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Figure 77 E�ect of 
min on Glass Data
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Figure 78 E�ect of 
min on Iris Data
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Figure 79 E�ect of 
min on Syn04 Data
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Figure 80 E�ect of 
min on Wine Data

of the algorithm, a direct comparison of its run-time performance against the decision

tree algorithms is not accomplished. Likewise, comparing it to the full-scale version

of GRaCCE would also be of little value as they both use the same algorithm. Be-

cause the primary motivation behind cGRaCCE was to determine if GRaCCE could

be successfully parallelized, the focus of the testing is to assess cGRaCCE with re-

spect to this goal. In particular, this involves testing how the the execution speed

of cGRaCCE improves as it is run on an ever more distributed environment. In

addition, the scalability of the RI phase for di�erent data sets is examined. To meet

these sub-objectives, cGRACCE's run-time performance is measured for data sets

that vary in terms of the following characteristics:

� Number of classes.

� Number of modes per class (i.e, unimodal versus multi-modal data).

� Number of boundary points.

� Distribution of boundary points among classes. The balance factor (BF) metric

in Equation 47 provides an estimate of this distribution. The closer the BF is
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Table 24 Data Set Descriptions
Data Set Classes Features Modes Boundary Balance

(Original/Used) Points Factor

Cancer 2 9/6 2 17 0.029

Glass 6 9/4 6 23 0.138

Mushroom 2 22/4 2 39 0.064

Soybean 19 19/15 19 103 0.023

SYN03 5 2/2 5 61 0.062

SYN04 2 2/2 25 105 0.020

Wine 3 13/3 3 21 0.032

to 1, the more uneven the distribution of boundary points among the classes;

a BF of 0 indicates a perfectly balanced distribution.

Balance Factor =
1

m

mX
i=1

�
j�ij
j�j �

1

m

�
(47)

With these requirements in mind, the data sets selected for testing are de-

scribed in Table 24. Two of these are synthetic data sets speci�cally designed to

exercise di�erent aspects of the cGRaCCE algorithm. In particular, SYN04 should

require many CH region searches (due to its highly multi-modal nature). In contrast,

SYN03 has more classes (5), but should require only one search per class since each

class is unimodal. The Soybean data set was used to test performance when a large

number of classes (19) is involved. The remaining data sets were chosen because they

each have a small number of classes. These totals are low enough for each class to

have a dedicated processor on the PC cluster; as a result, all classes can be processed

in parallel.

The execution times of each of the data sets are measured for the region iden-

ti�cation phase over several di�erent test cases. Each test case is de�ned by two

basic parameters: the hardware con�guration (in terms of the number of processors

utilized) and the size of the convergence window (q) as de�ned in Figure 32. The
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results reported for each test case are averaged over a series of thirty runs. The test

cases constructed for each data set were tailored to its characteristics. For a given

data set, the number of processors utilized is limited either by the constraints of the

available hardware or by the number of data classes. For example, since the Wine

data set has three classes, a maximum of three processors are used.

6.7.1 E�ect of Concurrency on Run-Time Execution Performance. The

results of these tests in terms of execution time and speed-up (relative to the single

processor con�guration) are documented in Figures 81 through 87. While using a

multi-processor con�guration almost always resulted in some degree of speed-up, the

overall e�ect was less substantial than expected. In general, the speed-up resulting

from adding additional processors was sub-linear (i.e, less than m); the only case

where it approached this ideal was for the SYN04 data set. Indeed, slow downs

actually occurred for the Wine and Cancer data sets when the convergence window

was set to its minimum (q = 10). For these cases, the duration of each CH region

search is short (� 0:2 sec) as compared to SYN04 (which has a duration of 3 sec or

greater).

An in-depth analysis of the raw data revealed several reasons for these uneven

results. Perhaps the major contributing factor is that the instruction cache on each

processor is only loaded after the �rst CH search has completed. Consequently, the

�rst CH search on each processor takes up to 2� longer than if it had not been

elaborated as a separate task. This situation leads to sub-linear speed-up on data

sets like SYN03 which have many classes, but result in few CH searches per processor.

In contrast, SYN04 exhibits nearly linear speed-up because su�cient CH searches

are executed on each processor to overcome this initial disadvantage.

Interprocessor communication (IC) overhead also impacted the observed speed-

up rates. Although all tasks are spawned simultaneously, MPI uses a binary tree

structure to broadcast shared data. Starting with the root task, the shared data is
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passed as required to up to two child tasks per parent. As a result, increasing the

number of tasks lengthens the broadcast path. Overall, a logarithmic increase in the

IC overhead (which averages 0.12 sec per inter-task broadcast) occurs as the number

of classes grows. This overhead is particularly expensive for tasks with execution

times of 1:0 sec or less; this is frequently the case for low values of q (i.e., q � 20).

In contrast, IC overhead is a much lower percentage of total duration for tasks with

large q values. This explains why speed-up generally improves as q increases. While

large imbalances in each processor's workload can also degrade the speedup rate, the

relatively small balance factors in Table 24 indicate this is a minor issue.

The above �ndings indicate that cGRaCCE, in its current form, most improves

the run-time execution performance of highly multi-modal data sets. Because data

sets with this characteristic require a large number of searches per processor, they

are less impacted by instruction cache latency and IC overhead. In contrast, little

(or negative) bene�t will accrue to data sets that are have a small number of classes

and unimodal class structures (as they are most a�ected by these factors). As the

number of classes increases, however, the speed-up rate will improve provided each

class can be assigned its own processor5. While the extra processors can partially

compensate for the instruction cache latency and IC overhead, the speed-up rate

remains sub-linear.

6.7.2 Scalability. Recall that the worst case algorithmic growth rate for

the region identi�cation phase was derived for both GRaCCE and cGRaCCE. in

the previous chapter. Nonetheless, the key question left unanswered is: how well

does GRaCCE's run-time execution performance scale in practice? Using the data

collected for these experiments, we try to shed some light on this issue.

5Although the performance of the Soybean data set catastrophically degrades when the number
of processors is increased to 11, the cause of this was traced to a problem with MPI which should
be corrected in future versions
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Figure 81 E�ect of Concurrency - Cancer Data
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Figure 82 E�ect of Concurrency - Glass Data
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Figure 83 E�ect of Concurrency - Mushroom Data
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Figure 84 E�ect of Concurrency - Soybean Data
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Figure 85 E�ect of Concurrency - SYN03 Data
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Figure 86 E�ect of Concurrency - SYN04 Data
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Figure 87 E�ect of Concurrency - Wine Data
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A data mining algorithm can be analyzed in terms of how its execution time

increases as the data set grows in complexity or size. With regard to the former

criteria, a visual representation of the system's scalability is obtained by plotting

its execution time versus the number of boundary points in the data set. Studies

of data mining algorithms have traditionally used data set size as the basis for

measuring run-time e�ciency (1; 132; 154); data set complexity was largely ignored

(perhaps because it is much harder to gauge). As was demonstrated in Section 5.5,

the structural complexity of a data set cannot be determined by size alone; simple

data sets can be large and vise versa. Further, the number of boundary points in

a data set can be expected to increase with the data's complexity. For this reason,

the boundary point count was selected to represent complexity.

Figures 88 through 90 show how the RI phase scales for convergence window

sizes of q = 10, q = 100, and q = 1000, respectively. Each �gure contains two distinct

trend lines. The �rst plots the execution time for the single processor con�guration;

the second re
ects the best performance achieved by the multi-processor con�gura-

tions tested. The trend lines are computed by �tting a polynomial (of degree 2) to

the associated data for each type of processor con�guration. All of the �gures indi-

cate a super-linear increase in execution time for the single processor con�guration

as the number of boundary points increases. For the multi-processor case, the trend

line can be characterized as linear (or even sub-linear). Thus, it would appear that

the RI phase algorithm scales far better in practice than predicted in Chapter V. It

must be noted, however, that these �ndings are based on a very small group of data

sets. Even so, it does provide some level of con�dence that GRaCCE's run-time

execution performance scales gracefully as the data increases in complexity.

With regard to the e�ect of size on scalability, the run-time execution times for

the RI phase is measured for two data sets (Mushroom and SYN04) as the number

of instances is increased. For the Mushroom data, a randomly selected subset of

the data (corresponding to the indicated size) was extracted from the data set. In
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Figure 88 Scalability of Region Identi�cation Phase for q = 10 as data set com-

plexity increases.
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Figure 90 Scalability of Region Identi�cation Phase for q = 1000 as data set com-

plexity increases.

the case of SYN04, the speci�ed number of instances were randomly generated from

a prede�ned probability distribution. Figures 91 and 92 show the results for the

Mushroom and SYN04 data sets, respectively. In both cases, the observed execution

time levels o� once the data reaches a critical size. In some respects, this outcome

is intuitive since the boundary point set only re
ects the probability distribution of

the data. Once � is su�cient to approximate this distribution, the execution time of

the RI phase should be fairly constant. These results are also consistent with the RI

phase average case time complexity derivation in Chapter V, which show execution

time growing as a function of the number of classes (m) and features (d), rather

than data set size (n). It is important to note, however, that the growth rates of

phases preceding the RI phase are directly dependent on n. The good news is that

these phases contain operations (such as kNN) which can easily be parallelized (9);

recall that Section 4.10 discusses the design issues involved with making GRaCCE

concurrent.
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Figure 91 Scalability of cGRaCCE as the size of the Mushroom data set increases
(q = 1000).
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(q = 100).

178



6.8 Summary

The purpose of this chapter was to gauge how well GRaCCE performs in

practice. In order to accomplish this, we tested the system on a variety of data sets

(refer to Table 15). The types of experiments performed fell into two basic categories:

inter-algorithm tests where GRaCCE was compared to other rule induction systems

and intra-algorithm tests which evaluated the performance of di�erent systemmodes.

A detailed summary of conclusions drawn from the outcome of these experiments is

provided below.

� The classi�cation accuracy of GRaCCE is roughly equivalent to that of the

decision tree algorithms tested. It under performs these algorithms, however,

on those data sets primarily composed of discrete features.

� The rule sets produced by GRaCCE generally exhibit better generalization (in

terms of classi�cation accuracy) as compared to those of CART and C4.5.

� The classi�cation error rate of GRaCCE generated decision rule sets can be

incrementally reduced by using Mahalanobis distance to classify orphan data.

However, this improvement is achieved by bypassing the generated rule set.

� GRaCCE consistently yields decision rules sets that are more compact (in

terms of number of rules and conditions per rule) than CART, C4.5 and OC1.

� When rule set complexity is analyzed with respect to the number of terms in

the rule set, GRaCCE clearly outperforms CART and OC1; it is comparable

in performance to C4.5, however.

� The performance of GRaCCE on cross-validated data were more consistent

than its competition. On some data sets (i.e., FLIR, glass and Soybean),

the decision tree algorithms exhibited wide swings in terms of the measured

results, depending on which portion of the data was used for training. This

suggests that these methods require more training data than GRaCCE to yield

consistent results.
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� The quality of the generated partitions (and hence the rule set) may su�er when

the training data is sparse with respect to the dimensionality of the data set.

It must be noted, however, that this problem is not limited to GRaCCE (58).

� Testing revealed the system to be robust with respect to the minimum purity

parameter (�min). Sensitivity to this parameter, however, is dependent on the

characteristics of the underlying data set. In particular, data sets which are

highly multi-modal are most impacted by variations in �min.

� The partition simpli�cation process can signi�cantly reduce the complexity of

the decision rule set. However, for many rule sets this results in a small increase

in the error rate. In addition, the worst case time complexity of this process,

O(d4n2 log(n)), may make it prohibitive for large, high-dimensional data sets.

� While a concurrent version of GRaCCE was successfully demonstrated, its

sub-linear speedup of execution time was less dramatic than predicted in Chap-

ter V. This was due in large part to cache memory and interprocess communi-

cation overhead on short duration tasks. Given this, cGRaCCE should achieve

higher speedup rates for more complex data sets (i.e., highly multi-modal,

many boundary points).

� The scalability of cGRaCCE's execution time was tested for a limited number

of data sets. The results indicates that, in practice, the multi-processor con�g-

uration scales in a linear manner as data set complexity increases. In addition,

it appears that execution time of the RI phase may stabilize once a critical

mass of boundary points is generated.

These �ndings indicate GRaCCE generated rule sets outperform those of state-

of-the-art rule induction algorithms in terms of generalization and rule set complexity

while maintaining a comparable level of accuracy. Because its decision rule sets are

smaller, the individual rules have greater support than those of the competition. As

a result, the knowledge discovered by the system is likely to be more valuable to

the user. In addition, the benchmark results show GRaCCE can be parallelized and
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demonstrates near linear scalability (in practice). Because these trends are based on

the analysis of empirical results, there is no guarantee that they can be duplicated

for every data set. That being so, the base of test cases is su�ciently diverse to

reasonably conclude that they will apply to the vast majority of data sets for which

the assumptions of Section 1.5 apply.
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VII. Conclusions and Recommendations

This chapter presents a summary of the research discussed in this dissertation. The

signi�cant contributions of the research are outlined and recommendations for future

research are provided.

7.1 Research Summary

The induction of decision rule sets from data that are accurate, compact and

understandable is a fundamental goal of data mining. While Chapter II describes a

wide spectrum of such decision rule induction (DRI) algorithms, many of these fall

short of this ideal due to one or more of the following factors:

� The NP-complete nature of the problem.

� The greedy nature of the induction algorithm.

� Simplifying assumptions about the data.

� Simplifying assumptions regarding the rule structure (e.g., conditions are equiv-

alent to univariate, linear partitions).

� Partitioning criteria that are inconsistent with the natural class boundaries.

� The tendency of induction algorithms to over-�t the data.

To illustrate this point, consider the traditional GA-based classi�ers pioneered

by Holland and Reitman (60) and DeJong et all (24). These methods use univari-

ate class partitions to construct rules which are based on the categories of discrete

features. A fundamental weakness of this approach is that these partitions may be

arbitrary with respect to the clusters within the data; this is especially a concern

when continuous data is categorized (33). The presence of such a condition can cause

the evolved decision rule sets to have large error rates or be overly complex.
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The above example highlights just how crucial a role the inherent structure

of the data plays in the induction process. Many DRI methods are extremely time

e�cient due to a priori assumptions made about the structure of the data and the

rule set. If the data �ts these assumptions, then the results can be quite good; if

not, then it becomes a case of trading execution speed for rule set quality (in terms

of classi�cation accuracy and size). A primer on data set related issues that impact

DRI algorithms was provided in Chapter III.

The research discussed in this dissertation accomplished the primary goal of

developing a new paradigm for a GA-based DRI, known as the Genetic Rule and

Classi�er Construction Environment (GRaCCE). This approach breaks with existing

GA-based DRI methods by constructing a rule set from a pool of class partitions

which are piecewise linear approximations to the Bayes optimal decision surface.

As discussed in Chapters IV and V, it is possible to use combinations of these

partitions to �nd class homogeneous (CH) regions in the data. Given a su�cient set

of partitions, the GA serves as the search engine for this process. The chromosome

structure enables each individual in the GA population to represent a CH region.

Thus, GRaCCE harnesses the power of genetic search to �nd CH regions that meet a

user-speci�ed purity criteria while maximizing coverage and minimizing complexity

(in terms of the number of partitions that de�ne each region). Once located, these

CH regions (and their associated partitions), can be simpli�ed and converted into

simple, accurate, and understandable classi�cation rules.

Another important aspect of DRI algorithms is their scalability. Ideally, as the

size of a data set increases, the time required to mine it should grow in a linear fash-

ion. Some decision tree algorithms, such as ID3 (105) have been theoretically shown

to meet this goal (144). Researchers have also devised parallel architectures for ID3

which exhibit linear speedup with respect to the number of utilized processors (132;

154). In light of these e�orts, a concurrent version of the Region Identi�cation (RI)

phase (referred to as cGRaCCE) was prototyped. Since the RI phase actually per-
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forms the CH region search, the motivation here is to determine if similar results

can be achieved by parallelizing GRaCCE.

7.2 Test Summary and Conclusions

Chapter VI of the dissertation discusses the testing of the GRaCCE algo-

rithm. The tests performed fall into two basic categories: inter-algorithm and intra-

algorithm. The inter-algorithm testing compares the system's performance to that

of several decision tree algorithms on a suite of benchmark data sets. The metrics

of interest are classi�cation accuracy and complexity of the generated decision rule

sets. The intra-algorithm testing examines how di�erent modes of GRaCCE a�ect

performance. Speci�cally, the following issues are analyzed:

� What are the classi�cation accuracy versus complexity reduction tradeo�s in

invoking the partition simpli�cation process?

� To what degree can accuracy be improved by classifying orphan data?

� How consistent are the results when the required CH region purity is varied?

Lastly, testing was conducted on the cGRaCCE prototype. These tests focused on

the relative speedup (e�ciency) of the system in a multi-processor con�guration. In

addition, the scalability of the RI phase was also evaluated in terms of increasing

data set size and complexity. The essential conclusions regarding the strengths and

weaknesses of GRaCCE (based on this testing) are1:

� GRaCCE has classi�cation accuracy comparable to those of the decision tree

algorithms tested. It under performs these algorithms, however, on those data

sets primarily composed of discrete features.

� The rule sets produced by GRaCCE exhibit better generalization (in terms of

classi�cation accuracy) as compared to those of CART and C4.5.

1For a more detailed list of �ndings, refer to Section 6.8
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� GRaCCE yielded decision rules sets that are signi�cantly more compact (in

terms of number of rules and conditions per rule) than any of the decision tree

algorithms tested.

� The performance of GRaCCE on cross-validated data was more consistent than

its competition. On some data sets, the decision tree algorithms exhibited wide

swings in terms of the measured results, depending on which portion of the

data was used for training. This suggests that these methods require more

training data than GRaCCE to yield consistent results.

� While a concurrent version of GRaCCE was successfully demonstrated, for

the most part it exhibited sub-linear execution time speedup. This was due in

large part to cache memory and interprocess communication overhead on short

duration tasks. Given this, cGRaCCE achieves best results for more complex

data sets (i.e., highly multi-modal, many boundary points).

� In terms of scalability, results indicate that, in practice, GRaCCE's multi-

processor con�guration scales in a linear manner as data set complexity in-

creases. In addition, it appears that execution time of the RI phase may

stabilize once a critical mass of boundary points is generated.

The above results show that GRaCCE possesses a number of qualities which

make it an excellent DRI algorithm. In particular, its ability to generate compact

decision rule sets of equivalent accuracy (as compared to decision trees) is notewor-

thy. Additionally, it has an architecture that can be easily parallelized (refer to

Section 4.10) and has shown interesting scalability properties for its most critical

phase. Given these �ndings, GRaCCE has the potential to be a world class data

mining paradigm.

7.3 Contributions

The principal contribution of this research is the development of GRaCCE as

a general purpose method for the induction of simple and accurate decision rule sets
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from data. The test results presented in Chapter VI show that, relative to several

decision tree algorithms, GRaCCE evolves a more compact rule set while achieving

a comparable level of accuracy for a wide range of data sets. This was accomplished

by identifying characteristics essential to the success of other rule induction methods

and combining them into a single, integrated algorithm; some of these characteristics

include:

� Using estimates of natural class boundaries within the data set as the basis for

constructing the decision rule set.

� Employing evolutionary search techniques to perform decision rule induction.

� Making a minimum of assumptions regarding the structure of the induced rules

and/or the data.

� Removing noisy or easily misclassi�ed instances from the training data set.

� Incorporating a method of simplifying the induced rules.

� Providing an architecture that allows rule induction to be accomplished with

a high degree of parallelism and scalability. This is an essential characteristic

for processing high dimensional data sets.

The following subsections summarize the secondary contributions resulting

from this research. Each of these describe speci�c aspects of GRaCCE that serve to

distinguish it from other rule induction algorithms.

7.3.1 A method for generating a su�cient set of partitions for decision rule

construction. The key to GRaCCE's success is the ability to generate a su�cient

pool of salient class partitions which can be used to form CH regions. As discussed

in Chapter IV, this method has two primary components. The �rst is winnowing the

data set in order to remove noisy and/or easily misclassi�ed instances. This process

makes the classes linearly separable. As a result, the identi�cation of boundary point
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pairs that straddle the Bayes decision boundary becomes much easier; this, in turn,

lays the foundation for generating the initial set of class partitions.

The second component of the method uses the existing boundary point (�) and

partition (�) sets to generate a su�cient partition set. The pseudocode describing

this process is contained in Figure 29. It is proved in Chapter V that this process

guarantees that � is su�cient to separate all boundary points of di�ering class present

in the data set.

7.3.2 The development of a GA-based \0=1" approach for supervised cluster-

ing of data. The centerpiece of GRaCCE is the Region Identi�cation phase, where

CH regions are formed using the set of generated partitions. This is accomplished

using a unique strategy where individual boundary points are made the focus of each

search. Once a boundary point is selected, a GA chromosome is organized to enable

CH regions to be represented as a �xed-length, binary string. The �tness of a region

formed by such a chromosome is then evaluated on the basis of its coverage, purity

and complexity. A full discussion of this approach can be found in Section 4.5.

7.3.3 A method for approximating the training set to accelerate rule induc-

tion. The use of weighted boundary points for rule induction gives GRaCCE

two important advantages over other methods. First, it accelerates the search for

CH regions since j�j is typically a small fraction of the total data set size. Other

DRI methods (such as decision trees) cannot substitute � for the data set because

they do not generate partitions a priori. As a result, the curse of dimensionality (8)

makes it infeasible for these algorithms to e�ectively utilize the boundary point set

(by itself). Another advantage is that (in some cases), GRaCCE's execution time

stabilizes as the size of the data set increases; recall that this was observed with the

Mushroom and SYN04 data sets in Section 6.7.2. This shows that using � in lieu of

the data set itself can help to improve the system's scalability.
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7.3.4 The development of a concurrent architecture for GRaCCE. The de-

sign for a concurrent version of GRaCCE was introduced in Section 4.10 and subse-

quently implemented; the corresponding test results were presented in Section 6.7.

Although sub-linear speedup was observed for small data sets due to cache mem-

ory and interprocessor communication overhead, analysis (and additional testing)

indicate that the system's scalability should improve as the task duration increases

su�ciently to compensate for these factors (49).

7.4 Recommendations for Future Research

It is relatively rare for research to have a �nite beginning or ending. No matter

how excellent the outcome of a research e�ort, there is always room for improvement

and new approaches to be tried. With respect to this dissertation e�ort, the following

subsections discuss ways (in order of priority) that the baseline GRaCCE system can

be modi�ed and/or extended through subsequent research investigations.

7.4.1 Translate GRaCCE from MatLab to C++. As indicated in Chap-

ter VI, GRaCCE's run-time execution performance was not directly compared to

those of the decision tree algorithms due to its implementation inMatLab. Although

MatLab is an excellent environment for prototyping, its interpreted code is signi�-

cantly slower than the executable of a compiled high level language (HOL) such as

C++. In retrospect, coding GRaCCE in C++ would have allowed for more extensive

testing, due to a reduction in the time required to process a given data set. Given

this, converting GRaCCE to C++ should be the �rst order of business for any future

research e�ort.

7.4.2 Develop a Fully Parallel Version of GRaCCE. It is widely recog-

nized that parallel data mining algorithms are an e�ective tool for analyzing large

databases (125). Unfortunately, only a single phase of GRaCCE was modi�ed to

execute concurrently. This is not because it is infeasible to parallelize the other
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phases, but that the e�ort was focused on the most di�cult part of the algorithm.

As discussed in Section 4.10, it should be relatively easy to parallelize procedures

like winnowing, boundary point identi�cation and initial partition generation. In

general, this can be accomplished by sharing 
, � and � among all nodes in a

multi-processor con�guration and assigning a di�erent, but equal, slice of the task

to each node. Consequently, a prime goal for future research is to unlock the power

of GRaCCE by developing a fully concurrent version.

7.4.3 Adapt for Very Large Databases. As discussed in Section 3.4, most

real-world databases di�er in terms of size and format from those tested in Chap-

ter VI. While developing a fully parallel version of GRaCCE is an essential part

of any approach for processing VLDBs, it is only one component. For example,

a strategy must be developed for limiting the amount of main memory used by

GRaCCE when processing VLDBs. While elements of the current approach (such as

data set approximation and the use of a �nite partition pool) support this objective,

further innovations are needed. In addition, the larger issue of accomplishing auto-

mated mining of RDBs must also be addressed (although this issue is not speci�c to

GRaCCE).

7.4.4 Optimize GRaCCE for Discrete Data Sets. One of the more im-

portant observations made in Chapter VI is that the decision rule set produced by

GRaCCE are less accurate (relatively speaking) for data sets with discrete features

than those composed of real-valued features2. While it may seem that oblique parti-

tions are not compatible with categorical data, it is important to remember that OC1

(which uses oblique partitions) (94) outperformed GRaCCE in these cases. Given

this disparity, more research must be done in order to improve the quality of oblique

partitions generated for discrete data sets.

2This statement is based on a performance comparison between GRaCCE, OC1 and C4.5
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7.4.5 Application of Genetic Programming to GRaCCE. Because GRaCCE

uses a binary GA chromosome, it is only possible to represent convex regions. While

these types of regions are usually adequate, it may be possible to improve classi�-

cation accuracy by using GPs (rather than GAs) to �nd regions of more complex

shapes. Under this scheme, a separate GP would be evolved to represent each CH

region. The GP terminal set could consist of the class partition set used by the GA.

In addition, the GP function set would consist of logical operators (such as AND,

OR, NOT, NOR, etc) which would serve to combine the partitions. The primary

disadvantage of this approach is that the regions could be much harder to interpret

than those evolved by the GA. Even so, this would be a worthwhile research topic.

7.5 The Last Word

In conclusion, the design, development and testing of GRaCCE have provided

a tremendous amount of insight into a number of disciplines, including data mining,

machine learning, and pattern recognition. Given the many ways this technology

can be applied to the USAF mission, it is my sincerest hope the metaphoric gauntlet

will be picked up by subsequent AFIT students interested in data mining research.
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Appendix A. Review of Genetic Search Methods

This appendix provides a short tutorial on the genetic algorithm (GA) and genetic

programming (GP) paradigms1

A.1 What is a Genetic Algorithm?

The genetic algorithm is a stochastic global search method which derives its

behavior from a metaphor of some of the mechanisms of evolution in nature. This is

done by the creation within a machine of a population of individuals represented by

chromosomes, in essence a set of character strings that are analogous to the base-4

chromosomes that we see in our own DNA. The individuals in the population then

go through a process of simulated evolution in a given environment. In this case,

the environment can be thought of as a �tness landscape (70) like that shown in

Figure 93; each member of the GA population occupies a point on the landscape.

Just as in natural adaption, the evolutionary process results in a population of

individuals better suited to their environment than the initial population.

In practice, this genetic model of computation can be implemented using ar-

rays of bits or characters to represent the chromosomes. Simple bit manipulation

operations allow the implementation of crossover, mutation and other operations.

Although a substantial amount of research has been performed on variable-length

strings and other structures, the majority of work with GAs (including the research

described in this document) is based on using �xed-length character strings to en-

code the solution being sought. This is a crucial characteristic that distinguishes

genetic algorithms from genetic programming, which does not have a �xed length

representation and there is typically no encoding of the problem.

1Much of the material in this appendix is taken from existing tutorials on evolutionary search
methods (16; 46; 56; 92).
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Figure 93 The GA is used to search a given landscape.

A.2 Algorithm

When the genetic algorithm is implemented, it is usually done in a manner

that involves the following cycle: Evaluate the �tness of all of the individuals in the

population. Create a new population by performing operations such as crossover,

�tness-proportionate reproduction and mutation on the individuals whose �tness has

just been measured. Discard the old population and iterate using the new population.

One iteration of this loop is referred to as a generation. There is no theoretical

reason for this as an implementation model. Indeed, we do not see this punctuated

behavior in populations in nature as a whole, but it is a convenient implementation

model.

The �rst generation (generation 0) of this process operates on a population of

randomly generated individuals. From there on, the genetic operations, in concert

with the �tness measure, operate to improve the population. This cycle continues

for a maximumnumber of generations (speci�ed by the user). The basic pseudocode

for a GA is presented in Figure 94. A more formal, mathematical GA de�nition is

provided by B�ack (6).
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Algorithm GA is

// start with an initial time

t := 0;

// initialize a usually random population of individuals

initpopulation P(t);

// evaluate fitness of all initial individuals of population

evaluate P(t);

// test for termination criterion

while t < max_generations (q)

// increase the time counter

t := t + 1;

// select a sub-population for offspring production

P' := selectparents P(t);

// recombine the "genes" of selected parents

recombine P'(t);

// perturb the mated population stochastically

mutate P'(t);

// evaluate its new fitness

evaluate P'(t);

// select the survivors from actual fitness

P := survive P, P'(t);

end; // while

end GA.

Figure 94 GA Algorithm Outline
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The GA is of polynomial order complexity with a �nite space requirement

determined by the population size. Although Goldberg (42) suggests that there is

an optimal population size (n) which depends on the length of the chromosome (l),

there is no �xed dependence between the length of the string and the population

size. Experimental evidence, however, suggests that an insu�cient population size

may adversely a�ect solution quality (41; 92).

The various genetic operators have associated maximumcomplexities, although

the complexity of an actual implementation may di�er. The complexity of each op-

erator is discussed in Section A.5. The complexity for the entire algorithm, however,

has been derived as

O(q � n�max(l;�; n)) (48)

where q is the maximum number of generations, n is the number of individuals in

P , and � is the GA objective function (78).

A.3 Theory

Since the theory of evolution is predicated on survival of the �ttest, individuals

that exceed the population's mean �tness level are more likely to pass on their genes.

This principle is the basis of Holland's Schema Theorem (61) which is the cornerstone

of GA theory. Due to its importance, this section reviews the basic theory underlying

the Schema Theorem.

A.3.1 Schema. Goldberg develops an estimate for the performance of the

Simple GA (SGA) (41). Theoretical analysis of GA performance makes extensive use

of schemata, or similarity templates. Schemata are strings composed of characters

taken from the genetic alphabet, with the addition of the \don't care" character (*).
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A schema thereby describes a subset of the potential solutions. For example, the

schema 1******* represents the set of all 8-bit strings which contain a 1 in the �rst

position. Likewise, the schema 1******0 represents the set of all 8-bit strings which

begin with a 1 and end with a 0.

The de�ning length, �(H), of a schema is the \distance" between the index of

the �rst speci�ed position and the index of the last speci�ed position. For example,

�(1�����0�) = 7�1 = 6, while �(1�������) = 1�1 = 0. The order of a schema

H, which is denoted o(H), is the number of speci�ed positions in the schema. For

example, o(1 � � � � � ��) = 1, while o(11111111) = 8.

The schema concept can be extended to apply to absolute and relative ordering

problems. Following Kargupta (69), an absolute ordering schema de�nes a set of valid

permutation strings. For example, the absolute o-schema !1!5!! represents the set of

all permutation strings for which the second and fourth positions contain alleles 1

and 5, respectively. This o-schema is distinct from the standard schemata �1 � 5 � �

in that the former requires that the string represent a valid permutation, while the

latter does not.

A.3.2 Fundamental Theorem. De�ning the average �tness of a string

matching a schema H to be f(H), the average population �tness to be f , and the

number of strings in a population at time t which match the schema to be m(H; t),

the e�ect of the reproduction operator is

m(H; t+ 1) = m(H; t)
f(H)

f
(49)

Noting that crossover disrupts a schema only when the crossover point occurs

within the de�ning length of the schema, the probability of survival under crossover

for a schema in a string of length l is
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ps � 1� pc
�(H)

l � 1
(50)

where pc is the probability of crossover and the inequality is used to re
ect the fact

that crossover may not actually disrupt the schema even when the crossover point

is within the de�ning length.

The probability of survival for the above schema under the mutation operator

then can be estimated as

pms � 1� o(H)pm; pm � 1 (51)

where pm is the probability of mutation. Combining these results and omitting the

negligible terms gives an estimate for the expected number of examples of a schema

in the next generation

m(H; t+ 1) � m(H; t)
f(H)

f

�
1� pc

�(H)

l � 1
� o(H)pm

�
(52)

This is referred to as the Fundamental Theorem of Genetic Algorithms, and

can be interpreted by stating that \short, low-order, above-average schemata receive

exponentially increasing trials in subsequent generations" (61). This result also goes

by the name of the Schema Theorem.

A.4 Problem Encoding

In the GA paradigm, individuals are coded as strings (chromosomes). Within

the chromosome are contiguous string segments (genes) that represent distinct fea-
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Encoding

Decoding
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        (Phenotype)

GA Search Space
      (Genotype)

Figure 95 The objective function translates an encoded genotype to its �tness as

a solution in the original domain search space.

tures. The encoding must be such that the objective function can uniquely map

the chromosome's value (genotype) to a corresponding �tness value (phenotype);

Figure 95 gives a pictorial representation of this translation process. GA designers

have traditionally used binary strings to encode the chromosome. One reason for the

popularity of binary strings is that they o�er the maximum number of schemata (for

a string of �xed length) of any discrete code (6). The practical advantage of having

more schemata is that it provides more 
exibility in tuning the solution. Binary

strings are also convenient to use because they are easily manipulated by GA opera-

tors such as crossover and mutation. They can also be used to represent non-binary

numbers that have integer and 
oating point representations.

Genetic algorithms are used for a number of di�erent types of problems. One

category is functional optimization problems. In these cases, the GA searches for

the best set of input parameters to optimize a given function. The parameters are

typically encoded by genes which use a set of contiguous bits to represent the required

range of values. An example coding of a 4 variable parameter set with a binary GA

is shown in Figure 96. The objective function decodes these parameter value and

inputs it to the function being optimized.
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X1 X2 X3 X4

0 0 0 0 000 0 0 001 111 11 111 1 1 1 1

Figure 96 Binary GA Chromosome Format (4 Variable)

In the context of this dissertation, the GA is used to solve a \0=1" type problem,

where each individual represents a discrete set of items included in the solution set.

With this encoding, each item is uniquely represented by a single gene. Thus, when

a gene's allele is set to 1, the item is present in the solution set; the opposite is true

when the allele is set to 0. The objective function then evaluates the goodness of

the given solution. As a result, these types of problems fall into the combinatorial

optimization category since the objective is to search for the optimal solution set.

The Knapsack problem (95) is an example of a 0=1 type problem to which GAs are

frequently applied.

Given the discussion of GA theory provided above, it is desirable to code the

chromosome such that schema contributing to good solution �tness have a short

de�ning length (�). This lessens the chance that such schema will be disrupted by

either crossover or mutation operators. In many problems, however, the inherent

epistatic relationships between genes are not known by the GA designer. Methods

have been developed, such as Goldberg's Messy GA (44), to �nd good schema and

organize the chromosome accordingly.

A.5 Reproduction Strategies

Reproduction is perhaps the most important process within a GA because it

determines the makeup of the next generation. Consequently, the reproduction strat-

egy controls the direction of the search. As indicated in Figure 94, the reproductive

process can be decomposed into a number of sub-functions: selection, recombina-

tion, mutation, evaluation, and reconstitution (of the population). Each of these is

summarized in the subsections that follow.
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Figure 97 Roulette Wheel Selection

A.5.1 Selection. Selection is the process of determining the number of

times, or trials, a particular individual is chosen for reproduction; in turn, this

in
uences the number of o�spring a given individual will produce. Most selection

scheme are based on �tness to insure that the most deserving individual are chosen

to pass on their genes (to enforce the Schema Theorem). In addition, they are also

probabilistic in nature. This helps insure diversity of the population, thus avoiding

premature convergence.

The two types of selection used in GRaCCE are roulette wheel selection (RWS)

and stochastic universal sampling (SUS). In RWS, a sum is computed from the sum

of the expected selection probability of all individuals, based on �tness. Each indi-

vidual is then mapped to the contiguous interval [0; sum]; the size of the interval is

determined by the individual's relative �tness. Consider, the roulette wheel depicted

in Figure 97. Since individual 5 is the most �t, it occupies the largest interval on the

wheel; in contrast, individual 4 is the least �t and has the smallest interval. To select

an individual, a random number is generated in the interval [0; sum]; the individual

whose segment spans the this number is chosen. This process is repeated until the

required number of individuals is selected.

Instead of the single selection pointer employed in RWS, SUS uses n equally

spaced pointers, where n is the number of selections required. The population is

randomly shu�ed and a single random number (ptr) in the range [0; sum=n] is gen-

erated. The n individuals are then chosen by generating a pointer for each individual,
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Figure 98 Stochastic Uniform Selection

based on ptr, spaced by 1. For example, the pointer for the �rst individual is ptr ; for

the second, it is ptr+1, for the third, it is ptr+2, etc. The individual which spans

each of the n pointer positions is selected. Figure 98 provides an illustration of this

process. Because it relies on only a single random number, SUS has a complexity of

O(n); this makes it much simpler than RWS, which has a complexity of O(n log n)

A.5.2 Recombination. The basic operator for producing new chromosomes

in the GA is that of crossover. Like its counterpart in nature, crossover produces new

individuals that have parts of both parent's genetic material. This operation serves as

the means to redistribute the higher �tness building blocks of a population as it forms

new candidates from the current population. The recombination algorithm takes the

individuals selected for reproduction and puts them in an array. Since the procedure

requires two parents, individuals with even indices are always mated to their adjacent

counterparts (odd) with the speci�ed probability of crossover. Once sets of parents

are chosen, a crossover operator is applied. The three types of crossover operators

used in GRaCCE are single point, double point and uniform; each of these are brie
y

described below. Each of these can be considered to be of O(l) since they traverse

the length of the string.

A.5.2.1 Single Point Crossover. The single point crossover operator

randomly picks a crossover position in the chromosome. As Figure 99 depicts, the
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Figure 99 Example of single point crossover

two children are composed of material from each parent (from either side of the

chosen position). Because the single crossover point is chosen by a uniformly random

function, high order schema are most likely to be disrupted. As a result, single point

crossover is said to be biased toward short, low order schema.

A.5.2.2 Double Point Crossover. As the name implies, double point

crossover picks two crossover points. This results in children that have alternating

segments from both parents (see Figure 100). Multi-point (3+) operators accom-

plish similar matings, albeit with more crossover points. While these operators help

eliminate some of the bias toward high order schema (since only a section of the

schema may be changed), it is still highly disruptive; this is not necessarily a bad

thing, however. It has been noted that the disruptive nature of multi-point crossover

appears to encourage the exploration of the search space, rather than favoring the

convergence to highly �t individuals, making the search more robust (128).

A.5.2.3 Shu�e Crossover. Even though double point crossover re-

duces some of the positional bias associated with single point crossover, it does not

eliminate it. For this to occur, a random, bitwise crossover operator (also known as

uniform) is needed. While the MatLab GA Toolbox does not o�er this, it does have

a shu�e crossover operator. This operator works by �rst randomly shu�ing the bits

in both parents. It then produces o�spring using a single point crossover. At this
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Figure 100 Example of double point crossover

point, it then returns the bits in the o�spring to their original position (as found in

the parent). An illustration of this process is contained in Figure 101.

A.5.3 Mutation. In natural evolution, mutation is a random process where

one allele of a gene is replaced by another to yield a new genetic structure. In GAs,

mutation is randomly applied, typically with low probability (in the 0.001 to 0.01

range) and modi�es elements in the chromosome. For example, a mutation rate of

0.01 means that 1 bit in 100 will be changed. For a binary chromosome, mutation

occurs by toggling the allele's value. Usually considered as a background operator,

mutation is often seen as providing a guarantee that the probability of searching any

given string will never be zero. This operator also functions as a safety net to recover

good genetic material that may be lost through the selection or crossover processes.

The mutation operation can be up to O(n) complexity.

A.5.4 Evaluation. This phase consists of the evaluation of each member

of the population by an objective function. The objective function returns a value

associated with each encoded solution that represents its goodness in the context

of the phenotype domain (refer to Figure 95). Often, some type of scaling function

is employed to translate the raw �tness value that can be more easily processed

by the other reproductive functions. For example, the raw �tness value yielded

for minimization problems is not compatible with the SUS selection operator. As
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P1 = 0 0 1 1 0 1 0 0 1 1

P2 = 1 1 0 1 1 0 0 1 1 0

MAP = 8 4 7 9 3 2 5 1 0 6

SP1 = 1 0 0 | 1 1 1 0 0 0 0

SP2 = 1 1 1 | 0 1 0 1 1 1 0

^ - Crossover Point

SO1 = 1 1 1 | 0 1 0 1 1 1 0

SO2 = 1 0 0 | 1 1 1 0 0 0 0

O1 = 1 1 1 0 0 1 0 1 1 1

O2 = 0 1 0 0 1 0 1 0 1 0

Figure 101 Example of Shu�e Crossover

indicated by Equation 48, the objective function is a major driver of the GA's growth

rate.

A.5.5 Reconstitution. The reconstitution operation builds a new popula-

tion (the next generation) from members of the existing population (parents) and

their o�spring. In the current GRaCCE implementation, the existing population is

completely replaced. However, the GA Toolbox gives the option of replacing the

existing population with a fraction of the new. A uniform (random) or �tness-based

replacement strategy is o�ered to choose which members of the existing population

are replaced.

There are two types of GA reproduction: sexual and asexual. Sexual repro-

duction is accomplished by combining components of selected individuals together

(parents) in order to form a new individual (child). Asexual reproduction involves

the random modi�cation (mutation) of an existing individual. Mutation helps the

GA break out of local minima, thus aiding the search for a globally optimum solu-
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tion. While there is no guarantee that GAs will �nd the best solution, their method

of selection and breeding candidate solutions can cultivate a pool of \good" solutions

given enough generations.

A.6 What is Genetic Programming?

Genetic Programming is a method of automatically generating computer pro-

grams to perform speci�ed tasks (77). The GA and GP paradigms share many

similarities. Like GAs, GPs emulate biological evolution in order to search through

a landscape for an optimal solution. In addition, the basic process by which GPs

are evolved is identical to that of GAs (see Figure 94). Despite the fact that they

share similar fundamentals, GAs and GPs di�er in several important ways. The �rst

major di�erence concerns the structure used to represent an individual. In a GA,

each solution is a chromosome of �xed length conforming to a prede�ned schema. In

contrast, the solutions generated by GPs are executable computer programs. A GP

solution candidate is composed of a set of functions and terminals. Functions are

operators (such as +, - *, and /) that accept parameters, process them, and return

a value; functions can also accept the output of other functions as parameters. Ter-

minals are variables that are passed to functions as parameters. The function and

terminal sets utilized in a given GP are speci�ed by the user.

An example of a GP which uses the above operator set is shown in Figure 102.

As illustrated by the �gure, GPs have a tree-like structure that can be readily trans-

lated into Lisp-like code. Note that the tree is evaluated recursively starting with

the root node. The value returned by the root node is the output of the GP. Starting

with the root node, the parameter of each function corresponds to a branch in the

tree; each parameter can be satis�ed by either another function (creating additional

branches) or a terminal (leaf). In order for this scheme to work, any function must

be able to accept as a parameter any other function or terminal; this condition is

known as the closure property.
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Figure 102 Example Genetic Program Structure

The operation of the objective function also distinguishes the two paradigms.

With a GA, the programmer mandates a method to solve the problem. Each GA so-

lution candidate is processed by this algorithm; the objective function then evaluates

the corresponding results. Since the algorithm is prede�ned (by the programmer),

the GA can merely adjust variables (in the chromosome) to tune the algorithm's per-

formance. Contrast this with the GP paradigm where the programmer provides the

basic \building blocks" (i.e., function and terminal sets) to be used in constructing

a solution. It is therefore imperative that the function/terminal sets provided are

su�cient to solve the problem. Each GP solution is executed and the correspond-

ing results are evaluated by the objective functions. In essence, the GP paradigm

determines how best to construct a solution given the appropriate function and ter-

minal sets. This gives GPs more 
exibility in �nding an optimal solution because

the programmer tells it what to use, but not how to use it.

The �nal di�erence results from the way reproduction occurs under the two

paradigms. While both GAs and GPs use the same operators (the crossover oper-

ator for sexual reproduction and the mutation operator for asexual reproduction),

the manner in which they are applied is dependent upon each paradigm's solution

representation. In the GA paradigm, crossover is performed by splitting two parent

chromosomes at a randomly selected point (called the crossover point). The child

is formed by combining a chromosome components from each parent (taken from

opposite sides of the crossover point). In contrast, the GP paradigm accomplishes

205



sexual reproduction by swapping subtrees of the parents in order to form a child.

Asexual reproduction is performed in the GA paradigm by randomly toggling bits

in the parent chromosome; as a result, the child is a mutation of the parent. In the

GP paradigm, mutation is accomplished by randomly picking a subtree in the parent

and generating a new subtree to replace it.
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Appendix B. GRaCCE User's Guide

The purpose of this appendix is to provide a rudimentary level of guidance for using

the Genetic Rule and Classi�er Construction Environment (GRaCCE). Since a de-

tailed description of the GRaCCE algorithm was given in Chapter IV, the material

presented here primarily serves to complement that discussion. Each of the following

sections provides explanations of how to con�gure and invoke all available system

operations. In addition, a series of useful hints for achieving optimal results are fur-

nished. It is strongly suggested that this appendix be read in full before attempting

to use GRaCCE.

B.1 Running GRaCCE

In order to use GRaCCE, the MatLab program must �rst be executed. This

can be done by typingMatLab at the Unix prompt. OnceMatLab is fully elaborated,

the following sequence must be typed at the MatLab prompt to initialize GRaCCE:

>> addpath .../ga2

>> addpath .../gracce

>> gracce

The �rst two statements de�ne the directory paths that GRaCCE needs to

access as it executes. The �rst path speci�es the location of the University of She�eld

Genetic Algorithm Toolbox software (16); this is the GA package used by GRaCCE.

The second path point to the directory where the GRaCCE MatLab code resides.

The third statement executes the program.

When GRaCCE elaborates, the Main menu (shown in Figure 103) will appear.

All system functionality is accessible through the Main menu. Table 26 describes
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the selectable items on this menu. Follow the instructions in this table to invoke

any GRaCCE operation (select features, winnow data, rule induction) and select

the related sub-menus. Note that when an operation is started, the menus will not

accept any input until it completes.

B.2 Preprocessing Operations

Before a decision rule set can be generated from a particular data set, it is

�rst necessary to pre-process it. As explained in Chapter IV, GRaCCE has two

preprocessing operations: feature selection and winnowing; of these, only winnowing

is mandatory.

B.2.1 Loading the Data File. The loading of a data set (in the correct

format) is a necessary prerequisite for performing preprocessing. A data �le must

have a \*.dat" extension in order to be recognized by the system. The data �les

must be a 
at �le format, with a single feature vector speci�ed per line. On each

line, distinct elements must be separated by at least one space character; in addition,

all elements must be in numeric form. The �rst element (leftmost) of each feature

vector must be the class; unlike the other elements, the class must be in natural

integer form (0; 1; 2; ...). Subsequent elements specify the values of the individual

attributes for that feature vector; these may be in either integer or real form. A

sample data �le (for the Iris data set) can be found in Appendix C.

Once an acceptable data �le is obtained, it can be loaded using the Load

Data Set button. When pressed, this button brings up a browse menu to select the

\*.dat" �le. When the desired �le is located and selected, pressing the Done button

on the browse menu causes it to be input to GRaCCE. If it is successfully read in,

the data set information �elds described in Table 25 will be instantiated (they are

initially blank). Before proceeding, check these �elds to make sure they re
ect the

true content of the data set.
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B.2.2 Feature Selection. If a reduced feature set is desired, then feature

selection (FS) must be done prior to winnowing. The FS operation can be con�gured

using the Preprocessing menu shown in Figure 27. FS can only be initiated after

a data set is successfully loaded. When the operation �nishes, the best feature set

found is output to the \*.fsr" �le. This �le consists of a string of 1's and 0's, corre-

sponding to selected and ignored features, respectively. If another (non-GRaCCE)

method is used for FS, then an \*.fsr" �le can be manually constructed.

B.2.3 Winnowing. Like FS, winnowing can only be initiated after a data

set has been successfully loaded. Winnowing can either be performed on a full or

reduced feature set, as speci�ed in the Feature Set Type item in the Preprocessing

menu. If a reduced feature set is chosen, then an \*.fsr" (matching the name of the

\*.dat" �le) must be provided. When the operation �nishes, a \*.wds" �le containing

the winnowed data is generated.

B.3 Decision Rule Induction

The decision rule induction operation can be con�gured using the Genetic

Algorithm (Figure 105) and Region Identi�cation Phase (Figure 106) menus1. Once

a given menu is selected, it can be displayed by pressing the Edit Menu button.

The items in each menu, and how they a�ect the algorithm's execution, are described

in Tables 28 and 29. The way in which the Table 28 menu parameters control the

GA are discussed in Appendix A; likewise, Chapter IV explains how GRaCCE uses

the Tables 29 menu items.

Before the induction process can commence, the appropriate \*.wds" �le must

be loaded2. When this has been accomplished, the process can be initiated by

pressing the Execute Operation button. As the algorithm executes, messages

1Default item values are depicted in the referenced �gures
2The browse menu �lter is driven by the type of operation selected. Preprocessing operations

use the \*.dat" �lter. This procedure uses the `*.wds" �lter.
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indicating its progress are output to the MatLab window. When the operation has

completed, all relevant results are written to a a report �le \*.rpt"; a sample report

�le can be found in Appendix C.

B.4 Helpful Hints

The way in which GRaCCE processes a given data set is driven by the data's

structural complexity. For example, highly multi-modal data sets are much more

di�cult to process than less complicated, ones. A data set's complexity is dependent

on the following factors:

� Data set size

� Data set dimensionality

� Number of classes

� Number of modes per class

� Relative position of these modes with respect to each other. Speci�cally, are

modes of a given class clustered together or are they interleaved with those of

other classes?

Of these factors, the �rst two are known a priori, while the last two are typically

unknown (especially for high dimensional data sets). It is reasonable, however, to

use the size of the boundary point and partition sets generated by GRaCCE as an

estimate of the data set's complexity. In general, the larger these sets, the more

complex the data set. Knowing the relative complexity of a data set can be useful

in choosing good parameter values. For this reason, it is good practice to perform a

trial run on each new data set in order to determine the size of these items3. With

a data set's complexity characterized, the following guidelines can be applied:

3The Simplify Partition On: item should be set to NONE for trial runs
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1. For most data sets (especially those that with many classes) it is a good idea

to use the global-only partition set before using the mixed option (global and

local partitions). This option will accelerate the algorithm's execution and

provide a baseline error rate (for comparison purposes).

2. In order to remain competitive (in terms of execution time) with other rule

induction algorithms, GRaCCE is typically run with small populations (100

members or less) and a small convergence window (q = 10).

3. As complexity increases, the percentage of utilized partitions can be decreased.

This is because clusters in a fragmented data set tend to be most a�ected by

the partitions closest to them.

4. The �min parameter should be set to a minimum of 70%. For highly multi-

modal data sets, purity should be set at a high value (90+%) to preserve the

natural mode structure.

5. Increasing the size of k during the winnowing process generally reduces the

size of the partition set generated. However, large values of k may cause small

classes to be completely eradicated.

6. Choosing to simplify partitions using the full or winnowed training set will

result in a compact decision rule set with the best accuracy. However, using

these options can be prohibitive (in terms of processing time), especially for

large, high dimensional data sets.

7. Setting the number of points for covariance matrix (�) estimation lower than

the dimensionality can produce a singular �. Requiring too many points,

however, can result in partitions that are unrepresentative of a given region.

Thus, for data sets with high dimensionality (10+), using a setting other than

automatic may be a necessity.

8. The default Probability of Mutation (pm) setting (0.1) is higher than usual.

Traditionally, mutation rates fall in the 0.001 to 0.01 range, depending on the

211



Figure 103 GRaCCE - Main Menu

size of the GA chromosome (6). It was chosen, however, because it appeared to

produce the best results for the data sets tested. This observation is supported

by Tate and Smith (136), who found that high mutation rates are bene�cial in

combinatorial optimization problems. In addition, Spears and DeJong (128)

showed that high mutation rates can help small populations avoid premature

convergence.

B.5 Leaving GRaCCE

In order to terminate GRaCCE, press the Exit System button on the Main

menu. If, however, GRaCCE is in the middle of an operation, processing must �rst

be halted using the <CNTRL-C> key at the MatLab prompt.
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Table 25 Main Menu - Data Set Informational Fields

Field Description

Data Set Name Name of the loaded data set.

Number of Vectors Total feature vectors in the loaded data set.

Number of Features Total features in the loaded data set.

Number of Classes Total classes in the loaded data set.

Table 26 Main Menu - Selectable Items

Item Description

Data Pro�le This item determines how the data set is divided for
training and test purposes. The choices are: 50=50,
60=40, 75=25, 80=20, 90=10, CVAL-5 and CVAL-10. For

example, if 75=25 is selected, then a random sample of

75% of the data is randomly chosen for training and the
remaining 20% is used for testing. If a cross-validation

(CVAL) option is chosen, then the fold speci�ed in the
Test Fold item is selected for testing and the rest are
used for training. For this option, the data set can be

divided into either 5 or 10 folds.

Test Fold If one of the CVAL options is selected in the Data Pro-

�le item, then this item chooses the data set fold used

for testing. If a CVAL option is not selected, then this
item is not displayed in the menu.

Select Operation This item chooses the GRaCCE operation to be executed.
The possible operations are select features, winnow data
and rule induction. The �rst two are preprocessing oper-
ations; these require a virgin data set (*.dat) to be loaded

before they can be executed. The rule induction opera-

tion produces the decision rule set; a winnowed data set
(\*.wds") must �rst be loaded. Data sets can be loaded

by pressing the Load Data Set button. The selected op-
eration can be run by pressing the Execute Operation

button.

Select Menu Type A particular parameter menu can be chosen with this

item. The three available are the Preprocessing, Ge-

netic Algorithm and Region Identi�cation Phase menus.
The selected menu can be edited by pressing the Edit

Menu button. These menus are described in Tables 27
through 29.
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Figure 104 GRaCCE - Preprocessing Menu

Table 27 Preprocessing Menu - Selectable Items

Item Description

Feature Set Type Determines if full or partial feature set should be used
during the winnowing process. If the partial set is

chosen, the \*.fsr" �le is read in to determine the
correct features to utilize.

Feature Selection Method Selects the method to use when feature selection pro-

cedure is executed. The available methods include:
forward search (FWD), GA-based search (GA), or a

hybrid of the two (FWD-GA).

Value of K Determines the value of k for the kNN algorithm used

in the preprocessing operations. The choices for k are:
1; 2; 3; 4; 5; 10; and 20.

FWD Search Extent Speci�es the percentage of total features to search for

when a FWD or FWD-GA feature search is initiated.
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Table 28 Genetic Algorithm Menu - Selectable Items

Item Description

Population Size (n) Determines size of the GA population. The available

sizes are 50; 75; 100; 200; 300; 500; 750; or 1000.
Probability of Crossover (pc) Speci�es the crossover probability for mating individ-

uals selected for reproduction.

Probability of Mutation
(pm)

Speci�es the mutation probability for GA reproduc-
tion. This parameter ranges from 0:001 to 0:1. If the
automatic option is chosen, the mutation rate is com-
puted using an equation derived by Scha�er (112),

pm = 1:75=(n
p
l)

Replacement Percentage Determine fraction of the population to be repro-

duced. Values range from 0.5 to 3.0. A number

greater than 1 allows more o�spring to be reproduced
than parents. A number less than 1 denotes an elitist

selection strategy.

Selection Function Type of probabilistic function used to select individu-
als for reproduction. Either stochastic universal sam-
pling (sus) or roulette wheel sampling (rws) can be
chosen.

Recombination Function Determines how individuals are mated during repro-

duction. The available functions are: single point

(xovsp), double point (xovdp), or shu�e (xovsh).

Convergence Window Size

(q)
Number of generation that must pass without a

change in �tness before the GA will terminate. The
available window sizes range from 3 to 50 generations.
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Table 29 Region Identi�cation Phase Menu - Selectable Items

Item Description

Partition Utilization Proportion of applicable partitions (closest to the chosen

boundary point) utilized for CH region searches (default

= 1:0).

Sample Size for Covari-

ance Estimate

Selects the number of boundary point neighbors (of like

class) used to compute the class covariance matrix dur-

ing partition generation. The choices are: Automatic,

3; 5; 10; and 20. If the Automatic option is selected, the
sample size is set equal to the number of features.

Region Utility Ratio This value is the RUR threshold used during the region
re�nement phase to eliminate CH regions of poor quality.

The available value vary between 0:001 and 0:3, with a
default of 0:1. The larger the number selected, the more
regions will be removed.

Region Purity (�min) This is the minimum purity a CH region must meet with
respect to the target class (default = 0:8). Failure to
meet this threshold causes the penalty to be applied in
the GA objective function (�).

Partition Simpli�cation

Ratio (�)
This parameter speci�es the threshold ratio of the

min:max increase in error caused by removing a term
from a partition. If the actual ratio is less than this
threshold, then the term corresponding to the minimum
increase in error can be removed from the partition. The

choices vary between 0:0 and 1:0, with a default of 0:2.

Partition Simpli�cation

Error threshold (�)
This parameter speci�es the maximum increase in error

resulting from the elimination of a term from a partition.

If the minimum increase in error does not exceed this

threshold, then the corresponding term can be removed
from the partition. The choices vary between 0:0 and 1:0,
with a default of 0:5.

Partition Usage: This parameter selects the type of partitions used during

the CH region search. The choices are: mixed (global
and local) or global only or local only.

Simplify Partition On: This parameter selects the type of data set used as the

basis for partition simpli�cation. The choices are: full

training set, winnowed training set, boundary point set,

and weighted boundary point set (default).
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Figure 105 GRaCCE - Genetic Algorithm Menu
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Figure 106 GRaCCE - Region Identi�cation Phase Menu
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Appendix C. Sample GRaCCE Report
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Table 30 Explanations of Fields within the GRaCCE Execution Report.

Field Description

Dataset Name of processed data set and training information.

GA Parameters Utilized values of the genetic algorithm parameters de-

scribed in Table 28.

Preprocessing

Parameters

Summary of the utilized parameter values for the Region

Identi�cation phase as described in Table 29.

Feature Selection Status Speci�es the features utilized (with respect to the original

data set).

Class Tallies Provides the per class tallies of instances in the training
and test data sets.

Clustering

Level Attained

Lists the percentage of data (per class) enclosed in a CH

region during training.

Classi�cation
Error Rates

Provides the classi�cation error rates for the training and
test data sets. A comprehensive explanation of these
categories can be found in Section 6.4.

Partition Usage Metrics The following metrics are provided: total partitions uti-
lized in the �nal decision rule set; average number of

partitions per CH region (cluster) and average decrease

in the dimensionality of each partition (when the Par-
tition Simpli�cation phase is enabled). Dimensionality
is de�ned as the number of non-zero terms in a given

partition's vector.

Partition List This is the mathematical description of each partition.
Since a partition (h) is de�ned by Equation 15, then the

components ~vN and X0 are provided here for each parti-

tion.

Cluster List Lists each CH region found during training. The CH re-

gions are described in terms of class, number of members,
position of the region's center (Xc) and number of de�n-
ing partitions. A mapping is also provided to the par-

titions (in the above list) which enclose the CH region.

This includes the orientation (fo = �1) of the partition
with respect to Xc such that: foh(Xc) � 0. A compre-

hension of this relationship is essential to interpreting the

decision rule set.
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GPCEE Execution Report:

Dataset: wine23 (fold 3 of 5)

GA Parameters ...

Population Size ==> 100

Probability - Crossover ==> 0.70

Probability - Mutation ==> 0.10

Probability - Replacement ==> 0.9

Selection Function ==> sus

Recombination Function ==> xovdp

GA Window Size (Gen) ==> 10

Preprocessing Parameters ...

kNN (value of k) ==> 3

Assignment Halt Threshold ==>

Required Cluster Purity ==> 0.80

Minimum Boundaries ==> 1.0

Boundary Increment ==> 0.15

Partition Error Threshold ==> 0.50

Partition Min/Max Ratio ==> 0.10

Region Utility Ratio ==> 0.01

Simplification Done Using ==> Weighted Boundary Points

Feature Selection Parameters ...

Feature Selection Status ==> FULL
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Training Data Information ...

Count for Class 0 ==> 49

Count for Class 1 ==> 55

Count for Class 2 ==> 37

Total ==> 141

Test Data Information ...

Count for Class 0 ==> 10

Count for Class 1 ==> 16

Count for Class 2 ==> 11

Total ==> 37

Clustering Level Attained ...

Level for Class 0 ==> 1.000

Level for Class 1 ==> 1.000

Level for Class 2 ==> 1.000

Train Error Rate (Method 1) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.000

Error Rate for Class 2 ==> 0.000

Composite ==> 0.000

Train Error Rate (Method 2) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.000

Error Rate for Class 2 ==> 0.000
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Composite ==> 0.000

Eval Error Rate (Method 1) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.073

Error Rate for Class 2 ==> 0.000

Composite ==> 0.028

Eval Error Rate (Method 2) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.018

Error Rate for Class 2 ==> 0.000

Composite ==> 0.007

Eval Error Rate (Method 3) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.018

Error Rate for Class 2 ==> 0.000

Composite ==> 0.007

Test Error Rate (Method 1) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.188

Error Rate for Class 2 ==> 0.000

Composite ==> 0.081

Test Error Rate (Method 2) ...

Error Rate for Class 0 ==> 0.000

223



Error Rate for Class 1 ==> 0.125

Error Rate for Class 2 ==> 0.000

Composite ==> 0.054

Test Error Rate (Method 3) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.125

Error Rate for Class 2 ==> 0.000

Composite ==> 0.054

Eval Error Rate (Method 4) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.073

Error Rate for Class 2 ==> 0.027

Composite ==> 0.035

Eval Error Rate (Method 5) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.036

Error Rate for Class 2 ==> 0.027

Composite ==> 0.021

Test Error Rate (Method 4) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.125

Error Rate for Class 2 ==> 0.000

Composite ==> 0.054
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Test Error Rate (Method 5) ...

Error Rate for Class 0 ==> 0.000

Error Rate for Class 1 ==> 0.125

Error Rate for Class 2 ==> 0.000

Composite ==> 0.054

Total Partitions Used ==> 3

Avg Partitions per Cluster ==> 1.667

Avg Decrease in Partition Size ==> 0.821

Partition 1 ...

V(1 ) ==> 0.421

V(2 ) ==> 0.000

V(3 ) ==> 0.730

V(4 ) ==> 0.000

V(5 ) ==> 0.000

V(6 ) ==> 0.000

V(7 ) ==> 0.000

V(8 ) ==> 0.000

V(9 ) ==> 0.000

V(10 ) ==> 0.000

V(11 ) ==> 0.000

V(12 ) ==> 0.000

V(13 ) ==> 0.002

X(1 ) ==> 12.765

X(2 ) ==> 1.962

X(3 ) ==> 2.324
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X(4 ) ==> 19.013

X(5 ) ==> 97.249

X(6 ) ==> 2.479

X(7 ) ==> 2.393

X(8 ) ==> 0.341

X(9 ) ==> 1.695

X(10 ) ==> 3.933

X(11 ) ==> 1.062

X(12 ) ==> 2.899

X(13 ) ==> 730.379

Partition 2 ...

V(1 ) ==> 0.000

V(2 ) ==> 0.000

V(3 ) ==> 0.000

V(4 ) ==> 0.000

V(5 ) ==> 0.000

V(6 ) ==> 0.000

V(7 ) ==> 0.000

V(8 ) ==> 0.000

V(9 ) ==> 0.000

V(10 ) ==> 0.000

V(11 ) ==> 0.000

V(12 ) ==> 0.263

V(13 ) ==> 0.001

X(1 ) ==> 13.513

X(2 ) ==> 2.706

X(3 ) ==> 2.450

X(4 ) ==> 19.559
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X(5 ) ==> 103.072

X(6 ) ==> 2.182

X(7 ) ==> 1.759

X(8 ) ==> 0.372

X(9 ) ==> 1.510

X(10 ) ==> 6.883

X(11 ) ==> 0.850

X(12 ) ==> 2.321

X(13 ) ==> 862.193

Partition 3 ...

V(1 ) ==> 0.000

V(2 ) ==> 0.000

V(3 ) ==> 0.000

V(4 ) ==> 0.000

V(5 ) ==> 0.000

V(6 ) ==> 0.000

V(7 ) ==> 0.779

V(8 ) ==> 0.000

V(9 ) ==> 0.000

V(10 ) ==> -0.154

V(11 ) ==> 0.000

V(12 ) ==> 0.000

V(13 ) ==> 0.000

X(1 ) ==> 12.788

X(2 ) ==> 2.697

X(3 ) ==> 2.357

X(4 ) ==> 20.782

X(5 ) ==> 96.509
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X(6 ) ==> 1.956

X(7 ) ==> 1.401

X(8 ) ==> 0.404

X(9 ) ==> 1.372

X(10 ) ==> 5.377

X(11 ) ==> 0.866

X(12 ) ==> 2.198

X(13 ) ==> 579.204

Total Clusters Found ==> 3

Cluster Number ==> 1

Primary Class ==> 0

Number of Members ==> 49

Number of Partitions ==> 2

Partition Map ...

Partition 1 ==> 1

Partition 2 ==> 1

Cluster Center ...

X(1 ) ==> 13.750

X(2 ) ==> 1.972

X(3 ) ==> 2.459

X(4 ) ==> 16.965

X(5 ) ==> 106.327

X(6 ) ==> 2.841

X(7 ) ==> 2.988

X(8 ) ==> 0.291

X(9 ) ==> 1.896
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X(10 ) ==> 5.518

X(11 ) ==> 1.064

X(12 ) ==> 3.131

X(13 ) ==> 1132.286

Cluster Number ==> 2

Primary Class ==> 1

Number of Members ==> 55

Number of Partitions ==> 2

Partition Map ...

Partition 1 ==> -1

Partition 3 ==> 1

Cluster Center ...

X(1 ) ==> 12.255

X(2 ) ==> 1.957

X(3 ) ==> 2.254

X(4 ) ==> 20.075

X(5 ) ==> 92.545

X(6 ) ==> 2.291

X(7 ) ==> 2.085

X(8 ) ==> 0.367

X(9 ) ==> 1.591

X(10 ) ==> 3.112

X(11 ) ==> 1.060

X(12 ) ==> 2.778

X(13 ) ==> 522.145

Cluster Number ==> 3
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Primary Class ==> 2

Number of Members ==> 37

Number of Partitions ==> 1

Partition Map ...

Partition 3 ==> -1

Cluster Center ...

X(1 ) ==> 13.257

X(2 ) ==> 3.348

X(3 ) ==> 2.447

X(4 ) ==> 21.405

X(5 ) ==> 100.000

X(6 ) ==> 1.661

X(7 ) ==> 0.799

X(8 ) ==> 0.437

X(9 ) ==> 1.180

X(10 ) ==> 7.372

X(11 ) ==> 0.694

X(12 ) ==> 1.687

X(13 ) ==> 629.459
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Appendix D. Summary of Mathematical and Algorithmic Notation
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Table 31 General Notation Summary

Symbol Description

d Number of features (dimensionality) in a given data set.

m Number of classes in a given data set.

n Number of instances (feature vectors) in a given data set.


 Data set.

!i Subset of data set belonging to the ith class.

D Euclidean distance function between two points.

DM Mahalanobis distance function between two points.

Table 32 Notation Summary - Boundary Points

b Represents an individual boundary point (refer to De�nition 1).

� Set of boundary points generated from a given data set Also see
description of b (above).

�i Subset of boundary points belonging to the ith class.

� Function that returns weight for a given boundary point (refer to
De�nition 3).

Table 33 Notation Summary - Class Partition

~vi The vector normal to the ith class partition.

h Denotes a hyper-plane (partition) separating two classes (refer to

Equation 15).

X0 Anchor point of partition (refer to Equation 13).

� Set of inter-class partitions generated from a given data set. Also

see description of h (above).


i Subset of partitions associated with the ith class. Note that since
each partition separates two classes, any given partition is associ-

ated with two distinct classes.

� Statistic - mean.

� Statistic - standard deviation.

� Covariance matrix.
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Table 34 Notation Summary - Genetic Algorithm (GA)

~ai The ith individual (chromosome) within the GA population.

P Represents the population of a GA.

p Size of the GA population.

q Size of the GA convergence window (in generations).

I Template for GA chromosome structure.

l Length of GA chromsome.

fm Mapping function between genes in I and associated partitions.

fo Orientation function (returns �1) for partition associated with each
gene in I.

� Genetic algorithm objective function.

�i This is the ith component of the objective function.

Table 35 Notation Summary - Region Identi�cation (RI) Phase

t Designtor of target class for CH region search.

~z Deterministic solution found using pseudocode in Figure 33.

� Returns the error (purity) of a the region de�ned by a given GA
chromosome with respect to the target class.

�min Minimum acceptable error within a given CH region.

R Set of class homogeneous (CH) region generated by GRaCCE.

~ri The ith region in R. This is an array of settings (�1=0=1) for each
partition.

Table 36 Notation Summary - Region Re�nement (RR) Phase

RUR Function which computes the region utility ratio fro a given region

(refer to Equation 19).

RURmin The minimum accepable region utility ratio. Regions which a lower

value than this threshold are eliminated.

�t Function which computes the proportion of class !t enclosed by a

given region.
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Table 37 Notation Summary - Partition Simpli�cation Algorithm

� Minimum allowable increase in error for for simplifying a given par-
tition.

� Minimum ration of minimum to maximum increase in error for sim-
plifying a given partition.

� Error rate (for the data set).

(�)+
min

Mininum increase in � resulting from a change to a partition in �.

(�)+
max

Maximum increase in � resulting from a change to a partition in �.

jmin Index of partition term that results in (�)+
min

when set to 0.
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Appendix E. Description of cGRaCCE Hardware Con�guration

The target platform for cGRaCCE is a cluster of personal computers (PCs), known

as the AFIT Beowulf Cluster. This heterogeneous PC cluster consists of one Dell

450 MHz, six Dell 400 MHz, and four Gateway 333 MHz single-processor Pentium

II computers connected via a 100 Mbps full duplex fast Ethernet switch. The I/O

bus on the Gateways operates at 66 MHz; the Dells I/O bus is clocked at 100 MHz.

All of the cGRaCCE experiments are run using Windows NT on the Dell 400 MHz

processors. Each of the Dell processors has 128 MB of 10 nsec SDRAM and one

8.4 GB SCSI hard drive. The MPI/Pro 1.2.3 communication package is utilized to

handle interprocessor communications. A block diagram of the Beowulf con�guration

is provided in Figure 107.
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Figure 107 Architecture of the AFIT Beowulf PC Cluster
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